陈江平

教授

所在系所:制冷与低温工程研究所

办公电话:021-34206775

电子邮件:jpchen@sjtu.edu.cn

通讯地址:上海交大bat365在线中国官网登录入口A楼420室

个人主页:

个人简介
教学工作
科研工作
荣誉奖励

教育背景

1995―1998 bat365在线中国官网登录入口制冷与低温工程专业 博士
1992―1995 南京航空航天大学工程热物理专业 硕士
1988―1992 天津大学工程热物理专业 学士

工作经历

1998―1999 bat365在线中国官网登录入口动力工程学院制冷与低温工程研究所  讲师
2000―2004 bat365在线中国官网登录入口制冷与低温工程研究所 副教授
2004―今 bat365在线中国官网登录入口动力工程学院制冷与低温工程研究所 教授
2017-2021 bat365在线中国官网登录入口学生创新中心   主任
2021-今 bat365在线中国官网登录入口大零号湾专项办公室   主任
2021-今 bat365在线中国官网登录入口生物医学工程学院   常务副书记

研究方向

微通道换热器技术
制冷剂替代技术
低温热泵技术
CO2空调技术

学术兼职

2019-今 教育部虚拟仿真实验教学创新联盟机械学科组组长
2019-今 教育部虚拟仿真实验教学创新联盟能源动力学科组副组长
2018-今 教育部高等学校工程训练指导委员会副主任
2017-今 全国专业标准化技术委员会委员
2016-今 环保部制冷剂替代选择委员会专家
2015-今 上海市高效冷却系统工程技术研究中心主任
2014-今 上海市新能源汽车空调工程技术研究中心技术委员会主任
2014-2016 中国汽车工程学会空调技术委员会主任
2013 《制冷技术》常务副主编
2012-2016 《Energy and Power Engineering》编委
2012-2016 联合国环境署制冷剂选择委员会(UNEP-RTOC)专家组成员
2012-2015 中国家用电器协会技术专家委员会专家
2012-2015 中国冷冻空调工业协会技术委员会委员
2008-2015 上海市制冷学会常务理事、副秘书长
2008-2016 中国房间空调器HCFC替代专家组成员(国家环保部)
2003-2013 联合国“气候变化政府间专门组织”(IPCC)专家
2003-2015 中国车用空调行业CFC替代专家组成员(国家环保部)
2000-2013 中国汽车空调专业委员会委员
1998-2015 上海市汽车工程学会理事兼车用空调专业委员会主任

课程名称: 制冷原理与装置,授课对象:本科三年级,学时数:54,学分:3
课程名称: 制冷原理与设备,授课对象:本科三年级,学时数:48,学分:3
课程名称: 制冷与低温原理,授课对象:本科三年级,学时数:51,学分:3
课程名称: 生产实习(热能与动力工程),授课对象:本科四年级,学时数:108,学分:6
课程名称:工程与社会,授课对象:本科生,学时数:48,学分:3
课程名称:工程技术探究,授课对象:本科生,学时数:33,学分:2

科研项目

2020-2025 国家重点研发计划,“基于电卡制冷效应的时空精准芯片主动控温系统设计与研究”,负责人
2018-2021 国家自然科学基金,“汽车空调CO2跨临界旋流喷射相变流动机理及其对系统性能的影响”,负责人
2016-2018 上海市优秀技术带头人项目,“低温热泵汽车空调系统开发”,负责人2015-2019 盾安项目,“新能源汽车技术联合研发中心的战略框架协议”,负责人
2015-2017 上气集团项目,“零下20℃低温热泵系统仿真及测试”,负责人
2014-2019 江苏杭钢项目,“微通道扁管技术、市场开发,工模具及检测设备开发”,主要负责人
2013-2016 环境保护部环境保护对外合作中心,“开展丙烷系统降充注研究技术支持活动”,负责人
2013-2015 上海加冷松芝项目,“新能源车空调(热泵)系统基础技术研究”,负责人
2013-2015 科技部公益项目,“含氢氯氟烃(HCFCs)替代技术评估与推广政策研究”,负责人
2012-2013 上海汽车工业科技发展基金会,“新型制冷剂R1234yf汽车空调系统的开发与性能优化”,负责人
2012-2013 上海市科委重点科技攻关项目,“中国南极中山站可再生能源微网系统关键技术研究与示范”,主要负责人
2012-2014 国家科技支撑计划,“微通道平行流换热器制造工艺及装备示范”,主要负责人
2011-2013 国家自然科学基金, “压缩喷射式制冷系统效率改进研究”,负责人
2011-2013 美国国际铜专业协会上海代表处项目, “电动汽车热泵空调研究”,负责人
2009-2010 盾安环境项目“热力膨胀阀开发”,负责人
2009-2011 上海市高新技术产业化重大专项“新能源车用电动压缩机及系统”,主要负责人
2008-2010 上海市青年科技启明星项目“制冷用热力膨胀阀内噪声产生机理及控制策略研究”,主要负责人之一
2008-2010 长安汽车集团项目“电动空调及二氧化碳车用空调系统设计与开发”,负责人
2008-2010 国家自然科学基金项目“加氢站用金属氢化物多级氢气压缩与连续输出系统的传热传质性能与循环特性”,合作单位负责人
2006-2008 国家863项目“以氢化物为工作介质的35MPa以上高纯氢连续输出技术”,合作单位负责人
2006-2008 国家863项目“发动机用强化传热冷却液纳米流体的研究与开发”,合作单位负责人

代表性论文专著

[1] Song, X., Zhang, L., Lu, D., Shi, J., Chen, J. Improvement of heat transfer performance and unmatched characteristics of a water-cooled carbon dioxide gas cooler[J]. Applied Thermal Engineering " 2021, 197, 117326
[2] Yu, B., Ouyang, H., Shi, J., Guo, Z., Chen, J. "Experimental evaluation of cycle performance for new-developed refrigerants in the electric vehicle heat pump systems[J]. International Journal of Refrigeration" 2021, 129, pp. 118-127
[3] Wang, T., Long, J., Li, W., Shi, J., Chen, J. Experimental evaluation of electric vehicle compressor lubricating oil robustness for heat pump application[J]. International Journal of Refrigeration" 2021,128, pp. 53-61
[4] Song, X., Lu, D., Lei, Q., (...), Shi, J., Chen, J. Energy and exergy analyses of a transcritical CO2 air conditioning system for an electric bus[J]. Applied Thermal Engineering 2021, 190, 116819
[5] Song, X., Lu, D., Lei, Q., (...), Shi, J., Chen, J. Experimental study on heating performance of a CO2 heat pump system for an electric bus[J]. Applied Thermal Engineering 2021, 190, 116789
[6] Zhang, Y., Liu, C., Lu, D., (...), Shi, J., Chen, J. Heat recovery design and test for the secondary loop heat pump MAC system[J]. International Journal of Refrigeration 2021 ,123, pp. 45-51
[7] Yang, J., Gao, L., Ye, Z., Hwang, Y., Chen, J. Binary-objective optimization of latest low-GWP alternatives to R245fa for organic Rankine cycle application [J]. Energy 2021 ,217, pp.119336
[8] Li, W., Liu, Y., Liu, R., (...), Cheng, L., Chen, J. Performance evaluation of secondary loop low-temperature heat pump system for frost prevention in electric vehicles[J]. Applied Thermal Engineering 2021, 182,115615
[9] Yu, B., Ouyang, H., SHI, J., LIU, W., CHEN, J. Evaluation of low-GWP and mildly flammable mixtures as new alternatives for R410A in air-conditioning and heat pump system[J]. International Journal of Refrigeration 2021 ,121, pp. 95-104
[10] Li, W., Liu, R., Liu, Q., (...), Shi, J., Chen, J. Upstream and downstream injection effects on R134a economized vapor injection heat pump system at low temperatures for electric vehicles [J]. International Journal of Refrigeration 2020,120, pp. 1-11
[11] YU, BINBIN, OUYANG, HONGSHENG, SHI, JUNYE, et al. Evaluation of low-GWP and mildly flammable mixtures as new alternatives for R410A in air-conditioning and heat pump system[J]. International Journal of Refrigeration,2021.
[12] Wang D, Zhang Z, Yu B, et al.Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system.Energy, 2019. 183, pp. 106-115
[13] Wang Y, Li W, Zhang Z, et al.Performance evaluation and prediction for electric vehicle heat pump using machine learning method.Applied Thermal Engineering, 2019: 113901
[14] Pan L, Liu C, Zhang Z, et al. Energy-saving effect of utilizing recirculated air in electric vehicle air conditioning system.International Journal of Refrigeration, 2019, 102: 122-129.
[15] Yang J, Ye Z, Yu B, et al. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze (Z), R1233zd (E), and R1336mzz .Energy, 2019, 173: 721-731.
[16] Yu B, Yang J, Wang D, et al.Energy consumption and increased EV range evaluation through heat pump scenarios and low GWP refrigerants in the new test procedure WLTP.International Journal of Refrigeration, 2019, 100: 284-294.
[17] Wang Y, Wang D, Yu B, et al. Experimental and numerical investigation of a CO2 heat pump system for electrical vehicle with Series Gas Cooler configuration.International Journal of Refrigeration, 2019, 100: 156-166.
[18] Yu B, Yang J, Wang D, et al.Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems.Applied energy, 2019, 239: 1142-1153.
[19] Yang J, Yu B, Chen J. Improved genetic algorithm-based prediction of a CO2 Micro-Channel Gas-Cooler against experimental data in automobile air conditioning system.International Journal of Refrigeration, 2019.
[20] Wang D, Wang Y, Yu B, et al.Numerical study on heat transfer performance of micro-channel gas coolers for automobile CO2 heat pump systems.International Journal of Refrigeration, 2019.
[21] Chen X, Wang D, Chen J. Facile synthesis of uniform yolk–shell structured FeS@ mesoporous carbon spheres for high-performance sodium-ion batteries.New Journal of Chemistry, 2019. 43(26), pp. 10291-10296
[22] Chen X, Yang J, Liu C, et al. Heating performance comparison of R410A and its substitutions in air-to-water heat pumps with vapor injection.International Journal of Refrigeration, 2018, 96: 78-87.
[23] Liu C, Zhang Y, Gao T, et al.Performance evaluation of propane heat pump system for electric vehicle in cold climate.International Journal of Refrigeration, 2018, 95: 51-60
[24] Zhang Z, Wang D, Zhang C, et al. Electric vehicle range extension strategies based on improved AC system in cold climate–a Review[J]. International Journal of Refrigeration, 2018. 88:141-150
[25] Ziqi Zhang, Wanyong Li, Chengquan Zhang, Jiangping Chen. Climate control loads prediction of electric vehicles[J]. Applied Thermal Engineering, 2017, 110: 1183-1188.
[26] Dandong Wang, Cichong Liu, Dengjia Yu, Jiangping Chen. Influence factors of flow distribution and a feeder tube compensation method in multi-circuit evaporators[J]. International Journal of Refrigeration, 2017, 73: 11-23.
[27] Ziqi Zhang, Wanyong Li, Junye Shi, Jiangping Chen*. A Study on Electric Vehicle Heat Pump Systems in Cold Climates[J]. Energies, 2016, 9(11): 881.
[28] Xu B, Wang Y, Chen J, et al. Investigation of domestic air conditioner with a novel low charge microchannel condenser suitable for hydrocarbon refrigerant. Measurement, 2016, 90: 338-348.
[29] Xu B, Zhang C, Wang Y, et al. Experimental investigation of the performance of microchannel heat exchangers with a new type of fin under wet and frosting conditions. Applied Thermal Engineering, 2015, 89: 444-458.
[30] Liang Y Y, Liu C C, Li C Z, et al. Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers. Applied Thermal Engineering, 2015, 87: 305-315.
[31] Hu J, Shi J, Liang Y, et al. Numerical and experimental investigation on nozzle parameters for R410A ejector air conditioning system. International Journal of Refrigeration, 2014, 40: 338-346.
[32] Liang Y Y, Hu J C, Chen J P, et al. A transient thermal model for full-size vehicle climate chamber. Energy and Buildings, 2014, 85: 256-264.
[33] Xu B, Han Q, Chen J, et al. Experimental investigation of frost and defrost performance of microchannel heat exchangers for heat pump systems. Applied energy, 2013, 103: 180-188.
[34] Zhao Y, Qi Z, Wang Q, et al. Effect of corrosion on performance of fin-and-tube heat exchangers with different fin materials. Experimental Thermal and Fluid Science, 2012, 37: 98-103.
[35] Zhao Y, Qi Z, Chen J, et al. Experimental analysis of the low-GWP refrigerant R1234yf as a drop-in replacement for R134a in a typical mobile air conditioning system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226(11): 2713-2725.
[36] Zhao Y, Liang Y, Sun Y, et al. Development of a mini-channel evaporator model using R1234yf as working fluid. international journal of refrigeration, 2012, 35(8): 2166-2178.
[37] Jin J, Chen J, Chen Z. Development and validation of a microchannel evaporator model for a CO 2 air-conditioning system. Applied Thermal Engineering, 2011, 31(2): 137-146.
[38] Qu X, Shi J, Qi Z, et al. Experimental study on frosting control of mobile air conditioning system with microchannel evaporator. Applied Thermal Engineering, 2011, 31(14): 2778-2786.
[39] Shi J, Qu X, Qi Z, et al. Investigating performance of microchannel evaporators with different manifold structures. International Journal of Refrigeration, 2011, 34(1): 292-302.
[40] Chen J, Zhao Y, Qi Z. New developments in mobile air conditioning systems in China. Frontiers in Energy, 2011, 5(1): 53-58.
[41] Yongming N, Jiangping C, Zhijiu C, et al. Construction and testing of a wet-compression absorption carbon dioxide refrigeration system for vehicle air conditioner. Applied thermal engineering, 2007, 27(1): 31-36.
[42] Hongsheng Liu, Jiangping Chen,Zhijiu Chen, Experimental investigation of a CO2 automotive air conditioner,International Journal of Refrigeration, 2005, 28(8): 1293-1301.
[43] J.P. Liu ,Y.M. Niu,J.P. Chen,Z.J. Chen,X. Feng. Experimentation and correlation of R744 two-phase ?ow through short tubes. Experimental Thermal and Fluid Science ,2004, 28 (8): 565–573.
[44] J.P. Chen, J.P. Liu, Z.J. Chen, Y.M. Niu. Trans-critical R744 and two-phase flow through short tube orifices. International Journal of Thermal Sciences, 2004, 43 (6): 623–630.
[45] Xuquan Li, Jiangping Chen, Zhijiu Chen etc. A new method for controlling refrigerant flow in automobile air-conditioning. Applied Thermal Engineering 24(2004):1073-1085.
[46] Ma Shanwei, Zhang Chuan, Chen Jiangping, Chen Zhijiu, Experimental research on refrigerant mass flow coefficient of electronic expansion valve, Applied Thermal Engineering, V25, No.14-15, 2005, P 2351-2366.
[47] Zhang Chuan, Ma Shanwei, Chen Jiangping, et al. experimental analysis of R22 and R407C flow through electronic expansion valve, energy conversion and management, 2006, 47(5): 529-544.
[48] Qin Feng, Chen Jiangping, Chen Zhijiu, Acoustic characterization and prediction for fan-duct-plenum-room integrations. Applied Acoustics. 2006, 67(3): 201-229.
[49] I Jiu-jian, CHEN Jiang-ping, CHEN Zhi-jiu, et al. Refrigeration performance analysis and its applicability of a new metal hydride couple in air-conditioning, Journal of Shanghai Jiaotong University(Science), 2005, E-10(1): 80-85.
[50] MU Jing-yang, CHEN jiang-ping, CHEN zhi-jiu, System design and analysis of the trans-critical carbon-dioxide automotive air-conditioning system. Journal of Zhejiang University (SCIENCE), 2003, 4(3): 305-308. 
[51] QIN Feng, CHEN Jiang-ping, CHEN Zhi-jiu, Numerical analysis and comparison of the fan ducted discharge equipment acoustics, Journal of Shanghai Jiaotong University(Science), 2005, E-10(2): 164-169.
[52] ZHANG Chuan, Ma Shan-wei, CHEN Jiang-ping, et al. Geometry modeling of an electronic expansion valve head.. Journal of Shanghai Jiaotong University(Science), 2004, E-8(2): 57-61.
[53] JIN Ji-feng, CHEN Jiang-ping, CHEN Zhi-jiu, Experimental study of the controlling characteristics of inverter-driven multi-type air conditioner. Journal of Shanghai Jiaotong University(Science), 2004, E-9(4): 52-56.
[54] QI Zhao-gang, CHEN Jiang-ping, CFD analysis of flow characteristics of corrugated louvered fin at low reynolds. Journal of Shanghai Jiaotong University(Science), 2005, E-10(1): 72-75.
[55] F. Qin , J.P.Chen, Z.J.Chen. Acoustic characterization and prediction for fan-duct-plenum-room integrations。Applied Acousti, 2006 (67), 201-229.
[56] Cai-Ling Jiang, Jie Tian, Hua Ouyang ,Jiang-Ping Chen, Zhi-Jiu Chen. Investigation of air-flow fields and aeroacoustic noise in outdoor unit for split-type air conditioner. Noise Control Engineering Journal 2006 vol.54(3):146-156.

软件版权登记及专利

1、 采用二次回路的汽车空调系统 201811513256.7
2、 带回热装置的并行压缩式CO2汽车热泵空调系统 201910121025.X
3、 一种以二氧化碳为工质的汽车空调系统和控制方法 ZL201811427246.1
4、 汽车热回收空调系统 201711320217.0
5、 用于汽车热泵空调的气液分离器 ZL201922191579.5
6、 电动汽车半导体空调系统 201510545880.5
7、 用于回热式低温制冷机的多流程回热器 201510161791.0
8、 并联式平行微通道多芯片散热器 201510109891.9
9、 双螺旋静密封四通换向阀 201610794912.X
10、 双月牙形旋转四通换向阀 201610793624.2;
11、 换热流道尺寸增大的旋转式四通换向阀 201610790616.2
12、 用于汽车空调的直筒式四通换向阀密封装置 201610794120.2
13、 Z字形两位四通换向阀 201610787228.9
14、 制冷和制热循环相互独立的电动汽车空调系统 201510577666.8
15、 电动汽车空调系统 201510639047.7
16、 同轴螺纹管漏流式换热器 201410342562.4
17、 汽车空调新风风门节能控制方法及系统 201610339131.1
18、 平行流换热器 201510359659.0
19、 单集流管平行流换热器 201510364435.9
20、 具有分段式螺纹内管的换热器 201510687885.1
21、 纯电动车用热泵系统 201410238992.1
22、 一种具有储液和排液功能的气液分离器 201310713221.9
23、 电动车热管理系统 201310234550.5
24、 具有自动除霜和回油功能的喷射循环 201310532550.3
25、 一种具有回油和排液功能的气液分离器 201310724026.6
26、 有利于减少制冷剂充注量的微通道换热器 201310208157.9
27、 一种排液型气液分离器 201310559632.7
28、 一种气液分离器 201210154610.8
29、 带有双向阀功能的膨胀阀 201310207728.7
30、 微通道换热器制造方法和装置 201310080896.4
31、 汽车空调用两位四通换向阀 201310214971.1
32、 汽车空调用两位四通换向阀,201310214971.1
33、 车用热泵换热系统, 201310234548.8
34、 一种气液分离器,201210154610.8
35、 电动汽车热管理装置,201110049685.5
36、 基振式半导体冷热杯,201110049681.7
37、 微通道平行流蒸发器,201110109967.X
38、 带交错翅片的热交换器管、制作方法及其应用,201110355416.1
39、 半导体饮水机,2010120300530.x
40、 偏转翅片两侧偏移展开的套管换热器,201010300534.8
41、 内置感温控制元件的膨胀阀,200810039574.4
42、 跨临界二氧化碳汽车空调系统机械调节式膨胀阀,200810039576.3
43、 R410A制冷系统自适应调节式膨胀阀,200810039577.8
44、 跨临界二氧化碳制冷系统自动调节式节流短管,200810039575.9
45、 跨临界二氧化碳制冷系统高压控制阀,200810040709.9
46、 阀芯可更换的二氧化碳制冷系统节流阀,200810040710.1
47、 紧凑式机油冷却器,200710042299.7
48、 汽车空调系统除异味装置,200710045442.8
49、 基于换热器翅片单元的性能试验装置,200610029119.7
50、 单合金压缩-扩散式金属氢化物热泵/制冷方法及系统,200610028891.7
51、 二氧化碳压缩机-膨胀机性能测试系统,200610026432.5
52、 替代制冷机节流元件的两相流喷射器,200510111024.5
53、 压缩机和尾气余热混合驱动的汽车空调制冷系统,200510111023.0
54、 跨临界二氧化碳制冷系统节流孔板,200510029649.7
55、 跨临界二氧化碳制冷系统节流短管,200510029500.9
56、 金属氢化物空调用贮氢合金,200410020804.4
57、 轿车空调蒸发器除霜装置,03129515.0
58、 轿车冷藏箱制冷装置,03129516.9
59、 轿车空调蒸发器制冷剂流量控制系统,03141547.4
60、 轿车空调送风温度控制系统,03141548.2

2019 建国70周年纪念奖章
2018 机械工业科学技术奖二等奖(1)
2017 中国产学研合作创新成果奖优秀奖(1)
2016 上海市技术带头人
2014 国家科技进步二等奖(2)
2014 机械工业科技进步二等奖(2)
2014 中国制冷学会科技进步一等奖(2)
2013 教育部科技进步一等奖(2)
2013 上海市科技进步二等奖(2)
2013 机械工业科学技术奖二等奖(2)
2011 中国国际工业博览会铜奖(1)
2010 上海市科技进步三等奖(1)
2010 bat365在线中国官网登录入口优秀教师特等奖
2009 上海市科技进步二等奖 (排名第2)
2009 国家教学成果二等奖(排名第6)
2008 上海市科技启明星跟踪
2007 诺贝尔和平奖(IPCC)
2006 bat365在线中国官网登录入口优秀老师
2005 上海市科技进步三等奖(排名第4)
2004 bat365在线中国官网登录入口优秀老师
2003 上海市科技启明星
2003 上海市科技进步三等奖(排名第2)
1998 教育部科技进步三等奖(排名第3)