黄诺帝

副教授

所在系所:智能制造与信息工程研究所

电子邮件:nhuang@sjtu.edu.cn

通讯地址:bat365在线中国官网登录入口A楼719室

个人主页:

个人简介
教学工作
科研工作
荣誉奖励

教育背景

2010.09-2017.03 bat365在线中国官网登录入口机械工程专业,博士
2015.08-2016.08 佐治亚理工学院机械工程系,联合培养博士
2006.09-2010.06 武汉大学机械设计制造及其自动化专业,学士

工作经历

2020.06至今 bat365在线中国官网登录入口,长聘教轨副教授
2019.01-2020.02 多特蒙德工业大学ISF研究所,洪堡学者/博士后
2017.04-2020.06 武汉大学动力与机械学院,博士后

研究方向

精密测量与加工:
1. 大尺寸先进计量与形性质量评估
*机器人运动精确引导、卫星天线高精度装调、柔性飞机蒙皮多维质量评价
2. 机床/机器人装备精度测量与补偿
*机床空间/热/动态误差测量与补偿、机器人几何误差测量与运动精度评估
3. 在机测量与加工误差补偿
*数控系统光顺插补、复杂曲面在机测量规划、性能驱动的自适应加工

*设计与制造I:2022年春,2023年春,2024年春
*智能制造装备与技术:2023年春

科研项目

2024.01-2028.12 国家自然科学基金国家重大科研仪器研制项目“大型复杂构件原位制造跨尺度在线协同测量系统”,合作方负责人
2023.07-2026.06 工信部高质量发展专项项目“***加工制造生产线”,合作方负责人
2021.01-2024.12 国家自然科学基金面上项目“基于加工-测量-仿真一体化的薄壁件切削变形与颤振自适应闭环控制”,负责人
2021.01-2022.12 bat365在线中国官网登录入口机械系统与振动国家重点实验室自主课题“卫星主承力桁架结构切削颤振抑制技术”,负责人
2020.11-2022.10 上海市浦江学者D类,负责人
2020.02-2021.12 上海航天科技创新基金“基于高效三维几何原位测量的多轴数控加工过程优化”,负责人
2019.07-2020.04 博士后科学基金特别资助项目“基于三维原位测量的薄壁件切削变形识别、预测与补偿”,负责人
2018.01-2020.12 自然科学基金青年科学基金“面向接触式原位测量的复杂曲面加工精度检测方法研究”,负责人
2018.01-2019.04 博士后科学基金面上项目“深腔结构件插铣加工机理及其工艺规划”,负责人

代表性论文专著

[1] Liang R, Yu Y, Chen J, Zhang X, Ren M, Huang N*, Zhu L. Tool path generation with a uniform residual error distribution considering tool contour error for ultra-precision diamond turning[J]. Journal of Manufacturing Processes, 2024, 115: 466-480.
[2] Hou L, Zhang Y, Jing L, Du, Z, Huang N*, Zhu L. A comprehensive error evaluation method for non-rigid body gantry machine tools considering quasi-static crosstalk based on optimized multilateration measurement[J]. Measurement, 2024: 114476.
[3] Zhao Z, Huang N*, Shen Y, Jia G, Zhang X, Zhu L. Modeling and prediction of full-term thermal error in linear axis of machine tools based on MSTGCN-A[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(9-10): 4805–4819.
[4] Li R, Huang N*. Zhang Y, Zhu L, Ibaraki S. Binocular vision measurement system for geometric error of 3D printers at high temperature[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(5-6): 2771-2783.
[5] Hua L, Zhao Y, Zhou J, Zhang Y, Huang N*, Zhu L. Five-axis toolpath interpolation method with kinematic corner smoothing and time synchronization[J]. Journal of Manufacturing Processes, 2023, 105: 338-358.
[6] Zhang Y, Huang N*, Hou L, Zhong L, Zhang Y, Zhu L. Intelligent sampling strategy for freeform surfaces based on on-machine measurement through real-time interactive communication[J]. IEEE Transactions on Instrumentation & Measurement, 2023, 72: 1-8.
[7] Jia G, Zhang X, Wang X, Zhang X, Huang N*. A spindle thermal error modeling based on 1DCNN-GRU-Attention architecture under controlled ambient temperature and active cooling[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3-4): 1525-1539.
[8] Zhao Z, Huang N*, Zhong L, Du Z, Ibaraki S, Zhu L. On-machine measurement of thermal influence of the long-span crossbeam of gantry machine tools using a 3D laser profiler[J]. Precision Engineering, 2023, 82: 52-61.
[9] Yi B, Li R, Li W. Wang X, Wu S, Huang N*. Adaptive milling for contours on deformed surface based on on-machine measurement and optimized parallel projection. The International Journal of Advanced Manufacturing Technology[J], 2023, 126(1-2): 443-452.
[10] Hua L, Huang N*, Yi B, Zhao Y, Zhu L. Global toolpath smoothing for CNC machining based on B-spline approximation with tool tip position adjustment[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(7-8): 3651-3665.
[11] Yi B, Liang R, Wang X, Wu S, Huang N*. Free-form surface form error evaluation based on smaller-scale sampling points in touch-trigger probing[J]. Precision Engineering, 2022, 76: 255-260.
[12] Yi B, Qiao F, Hua L, Wang X, Wu S, Huang N*. Touch trigger probe-based interference-free inspection path planning for free-form surfaces by optimizing the probe posture[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-8.
[13] Huang N, Hua L, Huang X, Zhang Y, Zhu L*. Biermann D. B-spline based corner smoothing method to decrease the maximum curvature of the transition curve[J]. Journal of Manufacturing Science and Engineering, 2022, 144(5).
[14] Huang N, Zhang Y, Zhu L*, Ibaraki S. Visually quantifiable test piece for five-axis machine tools thermal effects[J]. Journal of Manufacturing Science and Engineering, 2022, 144(5).
[15] Yi B, Qiao F, Huang N*, Wang X, Wu S, Biermann D. Adaptive sampling point planning for free-form surface inspection under multi-geometric constraints[J]. Precision Engineering, 2021, 72: 95-101.
[16] Huang X, Wu S, Liang L, Li X, Huang N*. Efficient trochoidal milling based on medial axis transformation and inscribed ellipse[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(3): 1069-1076.
[17] Huang N*, Krebs E, Baumann J, Zhou Y, Wu S, Biermann D. Experimental investigation on influence of engagement angle and tool geometry on plunge milling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5-6): 1973-1981.
[18] Huang N*, Krebs E, Baumann J, Wirtz A, Jaeger M E, Biermann D. A universal pocket plunge milling method to decrease the maximum engagement angle[J]. Journal of Manufacturing Science and Engineering, 2020, 142(8): 081005.
[19] Huang N, Jin Y, Lu Y, Yi B, Li X, Wu S*. Spiral toolpath generation method for pocket machining[J]. Computers & Industrial Engineering, 2020, 139: 106142.
[20] Huang N, Jin Y, Li X, Liang L, Wu S*. Identification of integrated geometric errors of rotary axis and setup position errors for 5-axis machine tools based on machining test[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8): 1487-1496.
[21] Huang N, Jin Y, Lu Y, Li X, Wu S*. Plunge milling with constant scallop height by adaptively modifying the step interval for pocket wall[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 203-208.
[22] Huang N, Yin C, Liang L, Hu J, Wu S*. Error compensation for machining of large thin-walled part with sculptured surface based on on-machine measurement[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12): 4345-4352.
[23] Huang N, Lynn R, Kurfess T*. Aggressive Spiral Toolpaths for Pocket Machining Based on Medial Axis Transformation[J]. Journal of Manufacturing Science and Engineering, 2017, 139(5): 051011.
[24] Huang N*, Zhang S, Bi Q, Wang Y. Identification of geometric errors of rotary axes on 5-axis machine tools by on-machine measurement[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(1-4): 505-512.
[25] Huang N, Jin Y, Bi Q*, Wang Y. Integrated post-processor for 5-axis machine tools with geometric errors compensation[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 65-73.
[26] Huang N, Bi Q, Wang Y*. Identification of two different geometric error definitions for the rotary axis of the 5-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 109-114.
[27] Huang N, Bi Q, Wang Y*, Sun C. 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84: 1-8.

软件版权登记及专利

*多轴机床热误差的可视化测量系统及方法. 发明专利, ZL202110859050.5
*基于最大切削包角约束的型腔分区插铣刀具路径规划方法. 发明专利, ZL201910925021.7
*一种基于三角网格简化的复杂曲面检测自适应采样方法. 发明专利, ZL201810980899.6
*House of quality for federated manufacturing APPs. 美国专利, US20190243618A1
*面向接触式测量的曲面自适应采样点规划系统. 软件著作权, 2019R11L1526701

*2020.11 上海市浦江学者
*2018.07 德国洪堡基金会洪堡学者