吴慧英
教授所在系所:工程热物理研究所
办公电话:021-34205299
电子邮件:whysrj@sjtu.edu.cn
通讯地址:上海交大bat365在线中国官网登录入口A411
个人主页:http:
教育背景
1986-1990 东南大学工程热物理专业 学士
1990-1993 东南大学热能工程专业 硕士
1993-1997 东南大学热能工程专业 博士
工作经历
1997-1999 bat365在线中国官网登录入口动力与能源工程学院 博士后
2000-2003 香港科技大学机械工程系 访问学者
2004- bat365在线中国官网登录入口 教授、博导
2004- bat365在线中国官网登录入口微流与热控研究中心 副主任
2005- bat365在线中国官网登录入口工程热物理研究所 副所长
2010- bat365在线中国官网登录入口 特聘教授
2013- bat365在线中国官网登录入口 二级教授
研究方向
1、 先进微电子芯片冷却理论与技术
2、 微能源动力系统与多相流技术
3、 高效热质传递理论与能量蓄存技术
4、 微纳尺度流体流动与传热传质
学术兼职
1、中国高等教育学会工程热物理专业委员会副理事长(2012-)
2、《热科学与技术》编委会副主任(2015-)
3、《电子机械工程》编委会委员(2022-)
4、中国工程热物理学会传热传质分会委员(2015-)
5、中国工程热物理学会多相流专委会委员(2015-)
6、中国力学学会多相流专业组委员(2013-)
7、ASME微纳尺度传热传质国际会议地区组委会主席、分会主席(2009)
8、国家自然科学基金委重点、杰青、优青、重点国际合作类项目评议专家
9、国家/省部级科技奖励通讯评议专家
1、课程名称: 工程热力学
授课对象:本科生
学时数:48
学分:3
2、课程名称: 传热学
授课对象:本科生
学时数:48
学分:3
3、课程名称: 工程热物理学科前沿
授课对象:研究生
学时数:4
科研项目
主要负责项目:
2024-2028 国家自然科学基金重点项目,“宽禁带高功率器件集成近结射流微通道高效相变散热及全场强化新方法”,负责人
2022-2026 XXXXXX重点项目课题,“XXXXXX研究”,负责人
2022-2024 科技部重点领域创新团队项目,“先进热质输运理论与技术”,负责人
2019-2023 国家自然科学基金重点国际合作项目,“三维堆叠芯片高效相变冷却关键科学问题研究”,负责人
2016-2020 国家自然科学基金重点项目,“微纳系统中粒子-流体输运机制及热质传递规律研究”,负责人
2010-2013 国家杰出青年科学基金项目,“基于无源和有源方式的集成微纳系统高效热质传递理论与技术”,负责人
2012-2016 国家重点基础研究计划课题,“气相余热高效梯级储存与转换的理论和方法”,负责人
2014-2017 国家自然科学基金面上项目,“复杂多孔介质中固液相变的格子Boltzmann方法及模拟”,负责人
2013-2015 上海科委基础研究重点项目,“微尺度体系内介质的高效混合/分离动力学行为、方法及调控机理的研究”,负责人
2012-2014 教育部博士点基金项目,“集成纳米流体和强化微通道网络的3D堆叠芯片冷却技术基础研究”,负责人
2011-2013 上海市优秀学术带头人计划项目,“微纳系统中复杂介质在复杂结构中的高效传输机理与方法”,负责人
2009-2011 上海市曙光计划跟踪项目,“微纳系统高效热质传递理论与方法的研究”,负责人
2007-2009 教育部新世纪优秀人才项目,“新型高效微电子芯片散热理论和技术”,负责人
2008-2010 上海市教委科研创新重点项目,“集成纳微米器件流动与热控制理论和技术”,负责人
2008-2010 上海市人才发展资金资助项目,“纳微米器件自循环流动与热控制技术”,负责人
2005-2007 国家自然科学基金面上项目,“亚微米芯片通道中凝结流型演变、热力特性及非稳定振荡研究”,负责人
2005-2007 上海市曙光计划项目,“集成脉动式芯片热管热控制研究”,负责人
2003-2005 中港合作科研基金,“微型芯片凝汽器基础研究”,负责人
1997-1999 中国博士后科学基金,“层板热管理装置发汗冷却基础研究”,负责人
主参项目:
2016-2021 国家自然科学基金创新群体项目,“传热传质与高效热力系统的基础研究”,排3
2006-2009 国家自然科学基金重点项目,“微/纳尺度条件下的流体流动与传热传质研究”,排2
代表性论文专著
连续入选Elsevier中国高被引学者(2014-2023),发表学术论文360余篇,Web of Science他引8000余次,主要代表性论文:
Li Yun, Wu Huiying*, Experimental investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink, International Journal of Heat and Mass Transfer, 2022, 187:122500.
Zhang Shengyuan, Tang Jun, Wu Huiying*, Huang Rongzong, Phase-field lattice Boltzmann model for two-phase flows with large density ratio, Physical Review E, 2022,105(1):015304.
Huang Rongzong*, Wu Huiying*, Adams NikolausA*, Mesoscopic lattice Boltzmann modeling of the liquid-vapor phase transition. Physical Review Letters, 2021, 126(24):244501.
Cheng Xiao, Wu Huiying*, Enhanced flow boiling performance in high-aspect-ratio groove-wall microchannels, International Journal of Heat and Mass Transfer, 2021, 164:120468.
Cheng Xiao, Yao Yuanpeng, Wu Huiying*, An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters, International Journal of Heat and Mass Transfer, 2021, 168:120843.
Cheng Xiao, Wu Huiying*, Improved flow boiling performance in high-aspect-ratio interconnected microchannels, International Journal of Heat and Mass Transfer, 2021,165:120627.
Tang Jun, Zhang Shengyuan, Wu Huiying*, Multiphase flow simulation with three-dimensional weighted-orthogonal multiple-relaxation-time pseudopotential lattice Boltzmann model, Physics of Fluids, 2021,33(12):123305.
Zhang Shengyuan, Tang Jun, Wu Huiying*, Huang Rongzong, Improved thermal multiple-relaxation-time lattice Boltzmann model for liquid-vapor phase change, Physical Review E, 2021,103(4):043308.
Yao Yuanpeng, Wu Huiying*, Interfacial heat transfer in metal foam porous media (MFPM) under steady thermal conduction condition and extension of Lemlich foam conductivity theory, International Journal of Heat and Mass Transfer, 2021, 169:120974.
Yao Yuanpeng, Wu Huiying*, Macroscale modeling of solid–liquid phase change in metal foam/paraffin composite: Effects of paraffin density treatment, thermal dispersion, and interstitial heat transfer, Journal of Thermal Science and Engineering Applications-Transactions of the ASME, 2021, 13(4):041024.
Yao Yuanpeng, Wu Huiying*, Thermal energy discharging performance of metal foam/paraffin composite phase change material at pore scale, Journal of Thermal Science and Engineering Applications-Transactions of the ASME, 2021, 13(5):051007.
Cheng Xiao, Wu Huiying*, Heat transfer enhancement for wake zone using slit pillar in microchannel heat sinks, Journal of Heat Transfer-Transactions of the ASME, 2020, 142(1): 012502.
Cheng Xiao, Wu Huiying*, Heat transfer and entropy generation analysis of slit pillar array in microchannels, Journal of Heat Transfer-Transactions of the ASME, 2020, 142(9): 092502.
Cheng Xiao, Wu Huiying*, Experimental comparison of flow boiling heat transfer in high aspect ratio microchannels with plain and grooved walls, Journal of Heat Transfer-Transactions of the ASME, 2020, 142(12): 121602.
Yao Yuanpeng, Wu Huiying*, Thermal transport process of metal foam/paraffin composite (MFPC) with solid-liquid phase change: an experimental study, Applied Thermal Engineering, 2020, 179: 115668.
Pan Zhenhai, Shen Yu, Wu Huiying*, Saturated flow boiling of isolated seed bubble across a heated square cylinder in two-dimensional microchannel, International Journal of Heat and Mass Transfer, 2020, 157:119885.
Dai Lianfu, Wu Huiying*, Tang Jun, The UGKS simulation of microchannel gas flow and heat transfer confined between isothermal and nonisothermal parallel plates, Journal of Heat Transfer-Transactions of the ASME, 2020, 142(12): 122501.
Zhenyu Liu*, Yao Xinyu, Cheng Xiao, Wu Huiying, Wang Han, Shen Hong, Experimental study on two-phase boiling in wavy copper microchannels fabricated with ultrafast laser micromachining, Journal of Micromechanics and Microengineering, 2020, 30:065011.
Gao Zeshi, Wu Huiying*, Yao Yuanpeng, Two-stage heat transfer characteristics of constrained melting inside an isothermally heated horizontal cylinder, International Journal of Thermal Sciences, 2019, 144: 107-118.
Gao Zeshi, Yao Yuanpeng, Wu Huiying*, Validation of a melting fraction-based effective thermal conductivity correlation for prediction of melting phase change inside a sphere, International Journal of Thermal Sciences, 2019, 142: 247-257.
Gao Zeshi, Yao Yuanpeng, Wu Huiying*, A visualization study on the unconstrained melting of paraffin in spherical container, Applied Thermal Engineering, 2019, 155: 428-436.
Huang Rongzong*, Wu Huiying, Adams Nikolaus A, Lattice Boltzmann model with adjustable equation of state for coupled thermo-hydrodynamic flows, Journal of Computational Physics, 2019, 392:227-247.
Huang Rongzong*, Wu Huiying*, Adams Nikolaus A*, Density gradient calculation in a class of multiphase lattice Boltzmann models, Physical Review E, 2019, 100: 043306.
Huang Rongzong*, Wu Huiying*, Adams Nikolaus A*, Lattice Boltzmann model with self-tuning equation of state for multiphase flows, Physical Review E, 2019, 99: 023303.
Pan Zhenhai, Chen Zhuo, Wu Huiying*, Self-excited rotation and flow dynamics across a freely rotatable square cylinder confined between two parallel walls, Physics of Fluids, 2019, 31: 087109.
Liu Zhenyu, Shi Xiaorui, Wu Huiying*, Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores. Nanotechnology, 2019, 30 (16): 165701.
Yao Yuanpeng, Wu Huiying*, Pore-scale simulation of melting process of paraffin with volume change in high porosity open-cell metal foam, International Journal of Thermal Sciences,2019,138: 322-340.
Liu Zhenyu, Mu Zhiyu, Wu Huiying*, Numerical modeling of slip flow and heat transfer over microcylinders with Lattice Boltzmann method. Journal of Heat Transfer-Transactions of the ASME, 2019, 141 (4): 042401.
Liu Zhenyu, Mu Zhiyu, Wu Huiying*, A new curved boundary treatment for LBM modeling of thermal gaseous microflow in the slip regime. Microfluidics and Nanofluidics, 2019, 23 (2): 27.
Yao Y.P., Wu H.Y.*, Gao Z.S., Liu Z.Y., Pore-scale visualization and measurement of paraffin solidification in high porosity open-cell copper foam, International Journal of Thermal Sciences, 2019, 135: 94-103.
Yao Y.P., Wu H.Y.*, Liu Z.Y., Gao Z.S., Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam, International Journal of Thermal Sciences, 2018,123: 73-85.
Yao Y.P., Wu H.Y.*, Liu Z.Y., Direct simulation of interstitial heat transfer coefficient between paraffin and high porosity open-cell metal foam, Journal of Heat Transfer-Transactions of the ASME, 2018, 140(3): 032601.
Xu F.Y., Wu H.Y.*, Effect of pin-fins on the onset of flow instability of water in silicon-based microgap, International Journal of Thermal Sciences, 2018, 130: 496-506.
Xu F.Y., Pan Z.H., Wu H.Y.*, Experimental investigation on the flow transition in different pin fin arranged microchannels, Microfluidics and Nanofluidics, 2018, 22(1):11.
Xu F.Y., Wu H.Y.*, Liu Z.Y., Flow patterns during flow boiling instability in silicon-based pin-fin microchannels, Journal of Heat Transfer-Transactions of the ASME, 2018, 140(3): 031501.
Xu F.Y., Wu H.Y.*, Experimental study of water flow and heat transfer in silicon micro-pin-fin heat sinks, Journal of Heat Transfer-Transactions of the ASME, 2018,140(12): 122401.
Huang H.X., Wu H.Y.*, Zhang C., An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels, Journal of Micromechanics and Microengineering, 2018, 28: 055003.
Huang R.Z.*, Wu H.Y.*, Adams N.A.*, Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow, Physical Review E, 2018, 97: 053308.
Yuan C., Pan Z.H., Wu H.Y.*, Inertial migration of single particle in a square microchannel over wide ranges of Re and particle sizes, Microfluidics and Nanofluidics, 2018, 22(9): 102.
Pan Z.H., Zhang R.L., Yuan C., Wu H.Y.*, Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel, Physics of Fluids, 2018, 30(10): 102005.
Liu Z.Y., Zhou J. Wu H.Y.*, Non-isothermal slip flow over micro spherical particle at low Reynolds numbers, Chemical Engineering Science, 2018, 191: 19-30.
Liu Z.Y., Zhou J., Wu H.Y.*, New correlations for slip flow and heat transfer over a micro spherical particle in gaseous fluid, Powder Technology, 2018, 338: 129-139.
Zhao K.W., Wu H.Y.*, The fountain effect of ice-like water across nanotube at room temperature, Physical Chemistry Chemical Physics, 2017, 19(42): 28496 - 28501.
Zhao K.W., Wu H.Y.*, Han B.S., Negative effect of nanoconfinement on water transport across nanotube membranes, Journal of Chemical Physics, 2017, 147(16):164705.
Yao Y.P., Wu H.Y.*, Liu Z.Y., Pore scale investigation of heat conduction of high porosity open-cell metal foam/paraffin composite, Journal of Heat Transfer-Transactions of the ASME, 2017, 139(9): 091302.
Wang H.R., Liu Z.Y., Wu H.Y.*, Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array, Energy, 2017, 138: 739-751.
Gu J., Huang R.Z., Liu Z.Y., Wu H.Y.*, A new curved boundary treatment in lattice Boltzmann method for micro gas flow in the slip regime, Acta Physica Sinica, 2017, 66: 114701.
Qu J., Wu H.Y., Cheng P., Wang Q.,Recent advances in MEMS-based micro heat pipes, International Journal of Heat and Mass Transfer, 2017, 110: 294-313.
Huang R.Z., Wu H.Y.*, Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow, Journal of Computational Physics, 2016, 327: 121-139.
Huang R.Z., Wu H.Y.*, Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change, Journal of Computational Physics, 2016, 315: 65-83.
Hu D.H., Wu H.Y.*, Volume evolution of small sessile droplets evaporating in stick-slip mode, Physical Review E, 2016, 93(4): 042805.
Liu Z.Y., Wu H.Y.*, Numerical modeling of liquid-gas two-phase flow and heat transfer in reconstructed porous media at pore scale, International Journal of Hydrogen Energy, 2016, 41(28): 12285-12292.
Liu Z.Y., Wu H.Y.*, Pore-scale study on flow and heat transfer in 3D reconstructed porous media using micro-tomography images, Applied Thermal Engineering, 2016, 100: 602-610.
Liu Z.Y., Wu H.Y.*, Pore-scale modeling of immiscible two-phase flow in complex porous media, Applied Thermal Engineering, 2016, 93: 1394-1402.
Zhao K.Y., Wu H.Y.*, Fast water thermo-pumping flow across nanotube membranes for desalination, Nano Letters, 2015, 15: 3664-3668.
Huang R.Z., Wu H.Y.*, Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change, Journal of Computational Physics, 2015, 294: 346-362.
Zhao K.Y., Wu H.Y.*, Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation, Physical Chemistry Chemical Physics, 2015, 17: 10343-10347.
Hu D.H., Wu H.Y.*, Numerical study and predictions of evolution behaviors of evaporating pinned droplets based on a comprehensive model, International Journal of Thermal Sciences, 2015, 96: 149-159.
Yao Y.P., Wu H.Y.*, Liu Z.Y., A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams, International Journal of Thermal Sciences, 2015, 97: 56-67.
Huang R.Z., Wu H.Y.*, Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field, Physical Review E, 2015, 91: 033302.
Hu D.H., Wu H.Y.*, Liu Z.Y., Effect of liquid-vapor interface area on the evaporation rate of small sessile droplets, International Journal of Thermal Sciences, 2014, 84: 300-308.
Huang R.Z., Wu H.Y.*, A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation, Journal of Computational Physics, 2014, 274: 50-63.
Huang R.Z., Wu H.Y.*, An immersed boundary-thermal lattice Boltzmann method for solid–liquid phase change, Journal of Computational Physics, 2014, 277: 305-319.
Zhou D.Q., Wu H.Y.*, A thermal conductivity model of nanofluids based on particle size distribution analysis, Applied Physics Letters, 2014, 105(8): 083117-083121.
Huang R.Z., Wu H.Y.*, Multiblock approach for the passive scalar thermal lattice Boltzmann method, Physical Review E, 2014, 89(4): 043303.
Huang R.Z., Wu H.Y.*, Cheng P, A new lattice Boltzmann model for solid-liquid phase change, International Journal of Heat and Mass Transfer, 2013, 59: 295-301.
Liu Z.Y., Wu H.Y.*, Steady-state and transient investigation of primary surface recuperator for microturbines, Heat Transfer Engineering, 2013, 34(10): 875-886.
Liu Z.Y., Yao Y.P., Wu H.Y.*, Numerical modeling for solid-liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage, Applied Energy, 2013, 112: 1222-1232.
Zhao K.W., Wu H.Y.*, Size effects of pore density and solute size on water osmosis through nanoporous membrane, Journal of Physical Chemistry B, 2012, 116(45): 13459-13466.
Qu J., Wu H.Y.*, Cheng P, Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes, International Journal of Heat and Mass Transfer, 2012, 55(21-22): 6109-6120.
Qu J., Wu H.Y., Wang Q., Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics, Nanoscale and Microscale Thermophysical Engineering, 2012, 16(1): 37-49.
Wu X.Y., Wu H.Y.*, Hu Y.D., Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shapede microchannels, Microfluidics and Nanofluidics, 2011, 11(1): 11-24.
Qu J., Wu H.Y.*, Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids, International Journal of Thermal Sciences, 2011, 50(10): 1954-1962.
Wu X.Y., Wu H.Y.*, High-efficiency magnetophoretic separation based on synergy of magnetic force field and flow field in microchannels, Science China: Technological Sciences, 2011, 54(12): 3311-3319
Qu J., Wu H.Y.*, Cheng P., Thermal performance of an oscillating heat pipe with Al2O3 - water nanofluids, International Communications in Heat and Mass Transfer, 2010, 37(2): 111-115.
Qu J., Wu H.Y.*, Flow visualization of silicon-based micro pulsating heat pipes, Science China: Technological Sciences, 2010, 53(4): 984-990.
Qu J., Wu H.Y.*, Cheng P., Non-linear analyses of temperature oscillation in a closed-loop pulsating heat pipe. International Journal of Heat and Mass Transfer, 2009, 52: 3481-3489
Wu X.Y., Wu H.Y.*, Cheng P., Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels. Journal of Micromechanics and Microengineering, 2009, 19(105020)
Wu H.Y.*, Wu X.Y., Wei Z., Flow friction and heat transfer of ethanol-water solutions through silicon microchannels, Journal of Micromechanics and Microengineering, 2009, 19(045005)
Wu H.Y.*, Wu X.Y., Qu J., Yu M.M., Condensation heat transfer and flow friction in silicon microchannels, Journal of Micromechanics and Microengineering, 2008, 18(115024)
Wu H.Y.*, Yu M.M., Cheng P., Wu X.Y., Injection flow during steam condensation in silicon microchannels, Journal of Micromechanics and Microengineering, 2007, 17: 1618-1627
Wu H.Y.*, Cheng P., Wang H., Pressure drop and flow boiling instabilities in silicon microchannel heat sinks, Journal of Micromechanics and Microengineering, 2006, 16: 2138-2146
Cheng P., Wu H.Y., Mesoscale and microscale phase change heat transfer, Advances in Heat Transfer, 2006, 39: 461-563.
Wu H.Y., Cheng P., Condensation flow patterns in silicon microchannels, International Journal of Heat and Mass Transfer, 2005, 48: 2186-2197
Wu H.Y., Cheng P., Boiling instability in parallel silicon microchannels at different heat flux, International Journal of Heat and Mass Transfer, 2004, 47: 3631-3641
Wu H.Y., Cheng P., Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios, International Journal of Heat and Mass Transfer, 2003, 46: 2519-2525
Wu H.Y., Cheng P., Visualization and measurements of periodic boiling in silicon microchannels, International Journal of Heat and Mass Transfer, 2003, 46: 2604-2614
Wu H.Y., Cheng P., An experimental study of convective heat transfer in silicon microchannels with different surface conditions, International Journal of Heat and Mass Transfer, 2003, 46: 2547-2556
Wu H.Y., Cheng P., Liquid/two-phase/vapor alternating flow during boiling in microchannels at high heat flux, International Communications in Heat and Mass Transfer, 2003, 30: 295-302
Wu H.Y., Cheng H.E., Shuai R.J., Zhou Q.T., An analytical model for decaying swirl flow and heat transfer inside a tube, Journal of Heat Transfer-Transactions of the ASME, 2000, 122: 204-208
Wu H.Y., Cheng H.E., Zhou Q.T., Compound enhanced heat transfer inside tubes by combined use of a spirally corrugated tubes and inlet axial vane swirlers, Journal of Enhanced Heat Transfer, 2000, 7: 247-257
软件版权登记及专利
授权专利:
1. 吴慧英、郑平、刘恩光,集成微热沉系统及其制备方法,中国发明专利 ZL 200710041126.3
2. 吴慧英、屈健、刘恩光,集成脉动芯片热管制备方法,中国发明专利 ZL 200710043439.2
3. 吴慧英、屈健、刘恩光,具有功能表面的微型芯片热管阵列的制备方法, 中国发明专利 ZL 200810036572.X
4. 胡定华、吴慧英、吴信宇,液滴内部热毛细流的操控方法,中国发明专利 ZL 201110068814.5
5. 吴信宇、吴慧英、胡定华,具有散热能力的集成磁泳分离芯片及其制备方法,中国发明专利 ZL 201210058773.6
6. 吴信宇、吴慧英、胡定华,微通道内利用低频间隙磁场强化微混合的方法,中国发明专利 ZL 201210058783.X
7. 高泽世、吴慧英、李超,一种内置相变材料的蓄热热管,中国发明专利 ZL 201210448045.6
8. 徐法尧、吴慧英、康宁, 微流控相变汽泡微泵阀及其方法, 中国发明专利 ZL 201310699647.3
软件著作权:
1. 王慧儒、吴慧英,间隙性余热组合相变蓄热单元热设计软件,软件著作权,登记号 2013SR032720
2. 王慧儒、吴慧英,管壳式相变储能装置设计计算软件,软件著作权,登记号 2014SR104728
3. 王慧儒、吴慧英,平板式相变储能装置火积耗分析及优化软件,软件著作权,登记号 2015SR085621
科技奖励:
2020年 教育部自然科学一等奖(排1)
2007年 国家自然科学二等奖(排2)
2006年 上海市自然科学一等奖(排2)
2001年 中国高校科技进步二等奖(排5)
荣誉称号:
2009年 国家杰出青年科学基金获得者
2021年 国家万人计划科技创新领军人才
2020年 科技部重点领域创新团队负责人
2014-2023 爱思唯尔中国高被引学者(Elsevier Most Cited Chinese Researchers)
2009年 全国巾帼建功标兵
2018年 bat365在线中国官网登录入口凯原十佳教师
2011年 上海市优秀学术带头人
2010年 上海市巾帼创新奖
2008年 上海青年科技英才
2008年 宝钢优秀教师奖
2008年 上海市曙光学者跟踪计划获得者
2008年 上海市人才发展资助奖励
2006年 教育部新世纪优秀人才
2005年 霍尼韦尔优秀教师奖
2004年 上海市曙光学者