张延松

教授

所在系所:薄板结构制造研究所

办公电话:021-34208421

电子邮件:zhangyansong@sjtu.edu.cn

通讯地址:上海交大bat365在线中国官网登录入口A楼614室

个人主页:暂无

个人简介
教学工作
科研工作
荣誉奖励

教育背景

2001-2005 bat365在线中国官网登录入口博士
1998-2001 吉林工业大学硕士
1993-1997 吉林工业大学学士

工作经历

2018.01- bat365在线中国官网登录入口 教授
2008.01-2017.12 bat365在线中国官网登录入口 副教授
2005.07-2007.12 bat365在线中国官网登录入口 讲师

研究方向

复杂薄板结构智能制造与质量控制
(1)复杂产品数智化质量控制
(2)薄板结构变形预测与控制
(3)数据驱动的制造过程检测

学术兼职

上海高技术船舶数字化建造工程技术研究中心专家委员

[1] 课程名称:智能装配与质量控制 授课对象:本科生 学时数:48 学分:3
[2] 课程名称:测试误差分析与数据处理 授课对象:研究生 学时数:48 学分:3
[3] 课程名称:工程材料 授课对象:本科生 学时数:51 学分:3
[4] 课程名称:制造工艺 授课对象:本科生 学时数:64 学分:4

科研项目

1) 2024-2027, 工信部船舶总装建造数字化提升工程课题,船舶总装建造数字化运营协同管控技术研究,主持
2) 2024-2027,工信部船舶总装建造数字化提升工程课题,船舶制造业数字化转型顶层设计研究,交大负责人
3) 2024-2027,国家自然科学基金面上项目,自蔓延反应产热辅助的金属箔片微电阻焊连接机理与工艺调控研究,主持
4) 2021-2022,中船集团-上海交大海洋装备前瞻基金重点项目,薄板激光复合焊多参数影响焊接工艺窗口机制研究和应用,主持
5) 2020-2023,上海市科委科技计划项目,大型邮轮薄板生产线激光复合焊接质量智能管控技术研究,交大负责人
6) 2019-2021,工信部高技术船舶智能制造专项课题,船舶分段智能制造装备解决方案及关键共性技术研究,交大负责人
7) 2017-2020,国家自然科学基金面上项目,叠层薄板结构电阻点焊动态传热机理及其尺度效应研究,主持
8) 2013-2016,国家自然科学基金面上项目,层叠式锂电池制造中金属极片的伺服超声波微焊接机理研究,主持
9) 2011-2013,上海市青年科技启明星计划项目,锂电池制造的多层超薄金属极片超声波焊接机理研究,主持
10) 2010-2012,国家自然科学基金青年项目,可控电极力对高强钢胶焊熔核形成过程的影响机理研究,主持

1) 2022-2024, 青岛海尔有限公司,深拉伸3.0线体无人化升级,主持
2) 2021-2021,上海电气集团,管屏拼焊焊缝表面缺陷视觉检测技术研究,主持
3) 2021-2022,上海宝钢股份有限公司,复合板焊接接头多界面微区性能评价技术研究,主持
4) 2018-2020,上汽大众汽车有限公司,MEB电池包下壳体框架焊接变形仿真研究,主持
5) 2018-2021,美国福特汽车公司URP项目,Resistance spot welding of 3D-printed steel components,主持

代表性论文专著

[1] Sen Zhang, Yansong Zhang. Automated weld defect segmentation from phased array ultrasonic data based on U-net architecture[J]. NDT&E International, 2024. 146: 103165.
[2] Liangfeng Li, Yansong Zhang. Hybrid laser-arc welding-induced distortions analysis of large-scale thin-walled cruise ship structures[J]. Journal of Manufacturing Science and Engineering, 2024. 146(1).
[3] Cheng Luo, Haitao Sun, Qilin Huang, Zunnong Ma, Yansong Zhang. Effect of welding conditions on the deformation of lithium battery pack of aluminum alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024, 238(4): 646-660.
[4] Zhiyuan Xu , Yansong Zhang. Improvement on microstructure and mechanical properties of Cu/Al ultrasonic spot welded joints assisted by periodic additional force[J]. Journal of Materials Processing Technology. 2024. 326: 118325.
[5] Sen Zhang, Yansong Zhang. Determination method of stable grasping parameters for irregular sheet sorting[J]. The International Journal of Advanced Manufacturing Technology, 2023. 128:2075–2085.
[6] Liangfeng Li, Cheng Luo, Jie Shen, Yansong Zhang. Numerical prediction of welding deformation in ship block subassemblies via the inhomogeneous inherent strain method[J]. Journal of Manufacturing Processes. 2022, 80: 860-873.
[7] Cheng Luo, Yansong Zhang, Michael Oelscher, et al. Resistance spot welding of additively manufactured maraging steels Part I: Nugget formation[J]. Journal of Manufacturing Science and Engineering –Transactions of the ASME, 2022, 144(7):071011.
[8] Cheng Luo, Yansong Zhang, Michael Oelscher, et al. Resistance spot welding of additively manufactured maraging steels Part II: Failure behavior[J]. Journal of Manufacturing Science and Engineering –Transactions of the ASME, 2022, 144(7):071012.
[9] Zunnong Ma, Cheng Luo, Yansong Zhang. Prediction of the interface deformation of ultrasonic spot welding of multilayer metal foils considering energy gradient[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2022, 144(5): 051011.
[10] Zhu M, Zhang YS, Zheng Q, Wu W, Qian WF and Wang BS. Study of residual stress evolution in SUS304/Q235 bimetallic clad plate butt-welded joints considering welding sequence[J]. Journal of Pressure Vessel Technology-Transactions of the ASME. 2022. 144(5): 1507-1516.
[11] Zhu M, Zheng Q, Wu W, Qian WF, Zhang YS and Wang BS. Influence of welding sequence on residual stress evolution in Incoloy825/X52 bimetallic clad plate butt-welded joints[J]. Science and Technology of Welding and Joining, 2021, 26(5): 356-362.
[12] Zhu M, Wu W, Qian WF, Xia LQ, Zhang YS and Wang BS. A brief review on welding of stainless steel clad plates: issues and future perspectives[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(1): 49-59.
[13] Cheng Luo, Yansong Zhang. Joining of copper foils via Al/Ni reactive multilayer nanofoils[J]. Journal of Materials Processing Technology, 2021, 298:117294.
[14] Cheng Luo, Yansong Zhang. Simultaneously enhanced reaction temperature and velocity of self-propagating high-temperature synthesis via joule heat induced multi-channel heat flow[J]. Journal of Applied Physics, 2021, 129:165304.
[15] Cheng Luo, Zhiyong Lai, Yansong Zhang. Improvement of mechanical properties of dissimilar spot-welded joints of additively manufactured stainless steels[J]. Journal of Manufacturing Processes, 2020, 54:210-220.
[16] Zunnong Ma, Yansong Zhang. Characterization of multilayer ultrasonic welding based on the online monitoring of sonotrode displacement[J]. Journal of Manufacturing Processes, 2020, 54:138-147.
[17] Cheng Luo, Yansong Zhang. Fusion zone characterization of resistance spot welded maraging steels via selective laser melting[J]. Journal of Materials Processing Technology, 2019, 273:116253.
[18] Cheng Luo, Yansong Zhang. Constitutive relationship of fusion zone in the spot welds of advance high strength steels[J]. Journal of Manufacturing Processes, 2019, 45:624–633.
[19] Cheng Luo, Yansong Zhang. Effect of printing orientation on anisotropic properties in resistance spot welded 316L stainless steels via selective laser melting[J]. Materials Letters, 2019, 254:237–241.
[20] Zhang, YS; Wang, HZ; Chen, KK and Li SH. Comparison of laser and TIG welding of laminated electrical steels[J]. Journal of Materials Processing Technology, 2017, 247: 55-63.
[21] Wang, HZ; Zhang, YS. Modeling of Eddy-Current Losses of Welded Laminated Electrical Steels[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4) :2992-3000.
[22] Zhao YY, Zhang YS, Wang PC. Weld Formation Characteristics in Resistance Spot Welding of Ultra-Thin Steel[J]. Welding Journal, 2017,96(2):71s-82s.
[23] Chen KK; Zhang YS, Wang HZ. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding[J]. Ultrasonics, 2017, 75(3): 9-21.
[24] Chen KK; Zhang YS; Wang HZ. Study of plastic deformation and interface friction process for ultrasonic welding[J]. Science and Technology of Welding and Joining, 2017, 22(3): 208-216.
[25] Wang, HZ, Zhang YS, Chen KK. Modeling of Temperature Distribution in Laser Welding of Lapped Martensitic Steel M1500 and Softening Estimation[J]. ASME Transactions, Journal of Manufacturing Science and Engineering, 2016, 138(11):111006-1-9.
[26] Wang, HZ; Zhang, YS; Li SH. Laser welding of laminated electrical steels[J]. Journal of Materials Processing Technology, 2016, 230: 99-108.
[27] Wang, HZ; Zhang, YS; Lai, XM. Effects of interfaces on heat transfer in laser welding of electrical steel laminations, International Journal of Heat and Mass Transfer, 2015, 90, pp. 665-677.
[28] Chen KK, Zhang YS. Mechanical analysis of ultrasonic welding considering knurl pattern of sonotrode tip, Materials & Design, 2015, 87, pp. 393-404.
[29] Chen KK, Zhang YS. Numerical analysis of temperature distribution during ultrasonic welding process for dissimilar automotive alloys, Science and Technology of Welding and Joining, 2015, 20 (6), pp. 522-531.
[30] Wang, HZ; Zhang, YS; Lai, XM. A model for the torsion strength of a laser-welded stator, Journal of Materials Processing Technology, 2015, 223, pp. 319-327.
[31] Zhang YS, Sun HT, PC Wang, and Chen GL. Improvement of Process Robustness in Weld Bonding of Galvanized DP780 Steel, Welding Journal, 2014,93(12):472s-481s.
[32] Zhao YY, Zhang YS, Lai XM and Wang PC. Effect of Inserted Strips on Electrode Degradation in Resistance Spot Welding, Welding Journal, 2014,93(11):411s-420s.
[33] Zhang YS, Shen J, Zhao YY, PC Wang, and Blair Carlson. Effect of adhesive characteristics on the weld quality in weld-bonding of multiple steel sheets, Welding Journal, 2013,92(12):363s-374s.
[34] Zhao YY, Zhang YS, Lai XM and Wang PC. Resistance Spot Welding of Ultra-Thin Automotive Steel, ASME Transactions, Journal of Manufacturing Science and Engineering, 2013, 135(2), 021012-1-10.
[35] Zhao YY, Zhang YS and Hu W. Effect of welding speed on microstructure, hardness and tensile properties in laser welding of advanced high strength steel, Science and Technology of Welding and Joining, 2013, 18 (7), pp. 581-590.
[36] Zhao YY, Li D and Zhang YS*. Effect of welding energy on interface zone of Al‐Cu ultrasonic welded joint, Science and Technology of Welding and Joining, 2013, 18 (4), pp. 354-360.
[37] Zhao YY, Zhang YS, Hu W and Lai XM. Optimization of Laser Welding Thin-gage Galvanized Steel via Response Surface Methodology, Optics and Lasers in Engineering, 2012,50(9):1267-1273.
[38] Shen J, Zhang YS, Lai XM and Wang PC. Adhesive placement in weld-bonding of multiple stacks of steel sheets, Welding Journal. 2012,91(2):59s-66s.
[39] Zhang YS, Shen J, and Lai XM. Influence of electrode force on weld expulsion in resistance spot welding of dual phase steel with initial gap using simulation and experimental method, ISIJ International. 2012,52(3):494-499.
[40] Shen J, Zhang YS*, Lai XM and Wang PC. Modeling of Resistance Spot Welding of Multiple Stacks of Steel Sheets, Materials and Design, 2011, 32(2): 550-560.
[41] Zhang YS, Shen J, Wang PC. Visualization of Nugget Formation in Resistance Spot Welding of Multi-stackup Sheets, Transactions of JWRI, 2010,39(2),pp.166-168.
[42] Shen J, Zhang YS, Lai XM. Influence of initial gap on weld expulsion in resistance spot welding of dual phase steel, Science and Technology of Welding and Joining,2010, 15 (5), pp. 386-392.
[43] Yang HJ, Zhang YS, Lai XM, Shen J, Zhao X, Wang PC. Method for repairing of adhesive-bonded steel, Materials and Design,2010,31(1),pp.260-266.
[44] Zhang YS, Sun HT, Chen GL, Lai, XM. Comparison of mechanical properties and microstructure of weld nugget between weld-bonded and spot-welded dual-phase steel, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, v 223(10) ,pp.1341-1350.
[45] Wang H, Zhang YS, Chen GL. Resistance spot welding processing monitoring based on electrode displacement curve using moving range chart, Measurement, 2009, V42(7) : 1032-1038.
[46] 20.Zhang XY, Chen GL, Zhang YS, Lai XM, Improvement of Resistance Spot Weldability for Dual-Phase (DP600) Steels Using Servo Gun, Journal of Materials Processing Technology, 2009, V209(5) : 2671-2675.
[47] Zhang YS, Xu J, Lai XM, Chen GL. Numerical simulation of spot welding for galvanised sheet steels, Science and Technology of Welding and Joining, 2008, V13(2) : 192-198.
[48] Sun HT, Lai XM, Zhang YS*, Shen J. Effect of variable electrode force on weld quality in resistance spot welding, Science and Technology of Welding & Joining, 2007,V12(8): 688-694.
[49] Zhang YS, Wang H, Chen GL, Zhang XQ. Monitoring and intelligent control of electrode wear based on a measured electrode displacement curve in resistance spot welding, Measurement Science & Technology, 2007,18 (3): 867-876.
[50] Zhang YS, Zhang XY, Lai XM, Chen GL. Online quality inspection of resistance spot welded joint based on electrode indentation using servo gun, Science and Technology of Welding and Joining, 2007, 12(5): 449-454.

软件版权登记及专利

[1] 相控阵超声焊缝检测数据智能评判系统,登记号:2022SR0935005
[2] 面向曲面分段肋板的自适应控制系统,登记号:2023SR0365331
[3] 复杂三维曲线焊接路径规划软件系统,登记号:2022SR1542870
[4] 曲面分段拼板埋弧焊接自适应控制系统 ,登记号:2022SR1620674
[5] 曲面分段拼板多丝气保焊接自适应控制系统,登记号:2023SR0197924
[6] 曲面分段纵骨激光复合焊接自适应控制系统,登记号:2022SR1615652
[7] 理料环境快速识别系统,登记号:2021SR0044410
[8] 理料装备异常状态报警系统,登记号:2021SR0813836
[9] 船体零件理料路径规划系统,登记号:2021SR0044408
[10] 小组立自适应焊缝位置识别系统,登记号:2021SR0044409
[11] 小组立焊接智能决策系统,登记号:2021SR0044470
[12] 自由边打磨智能决策系统,登记号:2021SR0300612
[13] 船体零件自由边识别系统,登记号:2021SR0300667
[14] 涂装表面形貌识别系统,登记号:2021SR0478452
[15] 船体零件智能理料装备中间文件生成系统,登记号:2020SR1706054
[16] 理料装备吊装参数监控系统,登记号:2020SR1706053
[17] 理料装备智能抓取系统,登记号:2020SR1706055
[18] 零件理料智能决策知识库系统,登记号:2020SR1706052
[19] 零件理料智能决策系统,登记号:2020SR1706012

[1] 发明专利:一种用于船舶理料装备的板材零件抓取方法及装置,授权号:ZL202210513090.9
[2] 发明专利:一种板材零件的理料装备,授权号:ZL202210009210.1
[3] 发明专利:一种利用超声辅助喷墨直写制备含能材料的装置及方法,授权号:ZL202210767482.8
[4] 发明专利:一种提高含能材料自蔓延反应速度的装置及方法,授权号:ZL202010919538.8
[5] 发明专利:一种用于提供附加力的超声波金属焊接基座,授权号:ZL202011385867.5
[6] 发明专利:一种用于金属超声波焊接压力调控的伺服压力装置,授权号:ZL201911376925.9
[7] 发明专利:一种采用船体板材切割零件理料装备的理料方法,授权号:ZL201911099152.0
[8] 发明专利:一种船体板材切割零件分拣装备及方法,授权号:ZL201911395380.2
[9] 发明专利:一种切割板件尺寸测量辅助装置,授权号:ZL201810084755.2

[1] 2020,2012,2009,2008 bat365在线中国官网登录入口“最受学生欢迎的教师”
[2] 2020 bat365在线中国官网登录入口教书育人个人三等奖
[3] 2012 bat365在线中国官网登录入口“最受学生欢迎的教师”
[4] 2011 上海市青年科技启明星人才计划
[5] 2011 bat365在线中国官网登录入口优秀教师奖