代表性论文专著
[1].Zhang, Z.; Zhou, R.; Ge, X.; Zhang, J.; Wu, X., Perspectives for 700 °C ultra-supercritical power generation: Thermal safety of high-temperature heating surfaces. Energy 2020, 190, 116411.
[2].Ge, X.; Zhang, Z.; Fan, H.; Zhang, J.; Bi, D., Unsteady-state heat transfer characteristics of spiral water wall tube in advanced-ultra-supercritical boilers from experiments and distributed parameter model. Energy 2019, 189, 116158.
[3]Zhang, J.; Zhang, Z.; Fan, H.; Ge, X.; Dong, J.; Xu, W., Experimental study of heat transfer characteristics in a coal-fired test facility under advanced ultra-supercritical conditions. Fuel 2020, 267, 117255.
[4]Dong J, Fan H, Wu X, et al. Study on the effect of flame offset on water wall tube temperature in 600°C and 700°C ultra-supercritical boiler[J]. Combustion Science and Technology. 2019, 191(3): 472-490.
[5]Jiang Y, Zhang Z, Mu A, et al. Analytic Hierarchy Process on comprehensive CO2 capture performance for activators with amine, nanoparticles and surfactants[J]. Chemical Engineering & Processing: Process Intensification, 2019,145,107663.
[6]Jiang Y, Zhang Z, Fan J, et al. Experimental study on comprehensive carbon capture performance of TETA-based nanofluids with surfactants[J], International Journal of Greenhouse Gas Control, 2019,88: 311-320.
[7]Dong, J.; Zhou, T.; Wu, X.; Zhang, J.; Fan, H.; Zhang, Z., Coupled Heat Transfer Simulation of the Spiral Water Wall in a Double Reheat Ultra-supercritical Boiler. Journal of Thermal Science 2018, 27, (6), 592-601.
[8]Bi, D.; Zhang, Z.; Zhu, Z.; Guo, X.; Bai, H., Experimental study on influencing factors of NOx reduction by combining air staging and reagent injection. Energy sources. Part A, Recovery, utilization, and environmental effects 2019,, 1-9.
[9]Wang, Y.; Yu, Y.; Zhu, X.; Zhang, Z., Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology. Fuel 2020, 270, 117486.
[10]Ge, X.; Dong, J.; Fan, H.; Zhang, Z.; Shang, X.; Hu, X.; Zhang, J., Numerical investigation of oxy-fuel combustion in 700 °C-ultra-supercritical boiler. Fuel 2017, 207, 602-614.
[11]An, H.; Yu, J.; Jiang, Y.; Fan, J.; Zhang, Z., Kinetics of steam and CO2 gasification with high ash fusion temperature coal char under elevated pressure. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2017, 39, (24), 2188-2194.
[12]An, H.; Yu, J.; Fan, J.; Jiang, Y.; Zhang, Z., Experiment study on entrained flow gasification technology with dry slag by second-stage water supply. Powder Technology 2017, 306, 10-16.
[13]Zhongxiao Zhang, Xiaojiang Wu, Tuo Zhou, Yushuang Chen, N. P. Hou, Guilin Piao, Nobusuke
Kobayashi, Yoshinori Itaya, Shigekatsu Mori. The effect of iron-bearing mineral melting behavior
on ash deposition during coal combustion[C]. Proceedings of the Combustion Institute. 33 (2010).
Accepted 2010.
[14]Xiaojiang Wu, Zhongxiao Zhang, Yushuang Chen, Tuo Zhou, Jie Li, etc. Main Mineral Melting Behavior and Mineral Reaction Mechanism at Molecular Level of Blended Coal Ash under Gasification Condition [J]. Fuel Processing Technology (Manuscript Number: FUPROC-D-10-00047). Accepted 2010.
[15] Xiaojiang Wu, Zhongxiao Zhang, Guilin Piao, Xiang He, Yushuang Chen, Nobusuke Kobayashi,
Shigekatsu Mori, Yoshinori Itaya. Behavior of Mineral Matters in Chinese Coal Ash Melting during
char-CO2/H2O Gasification Reaction [J]. Energy & Fuels, 2009, 23:2420-2428.
[16] Jie Li, Mei-Fang Du, Zhong-Xiao Zhang, Rong-Qing Guan, Yu-Shuang Chen, and Ting-Yu Liu. Selection of Fluxing Agent for Coal Ash and Investigation of Fusion Mechanism: A First-Principles Study[J]. Energy & Fuels, 2009, 23(2):704-709.
[17] Junjie Fan, Zhongxiao Zhang, Jing Jin, and Jianmin Zhang. Investigation on the Release
Characteristics of Light Hydrocarbon during Pulverized Coal Pyrolysis[J]. Energy & Fuels, 2007, 21
(5):2805–2808.
[18] LI Jie, DU Mei-fang, YAN Bo, ZHANG Zhong-xiao. Quantum and experimental study on coal ash fusion with borax fluxing agent[J]. J Fuel Chem Technol, 2008, 36(5):519-523.
[19] Xiaojiang Wu, Zhongxiao Zhang, Guilin Piao, Nobusuke Kobayashi, Shigekatsu Mori, Yoshinori Itaya. Experimental study on gasification characteristics and slagging behavior of Chinese typical high ash fusion temperature coal in lab scale downflow gasifier [J]. Asia-Pacific Journal of Chemical
Engineering. 2010, 5(3):427-434.
[20] Xiaojiang Wu, Zhongxiao Zhang, Tuo Zhou, Yushuang Chen, Guilin Piao, Nobusuke Kobayashi,
Shigekatsu Mori, Yoshinori Itaya. Mineral Melting Behavior of Chinese Blended Coal Ash under
Gasification Condition[J]. Asia-Pacific Journal of Chemical Engineering. 2010, 1, Published online
(Early View DOI: 10.1002/apj.425).
[21]田正林; 余岳峰; 朱小磊; 王宇; 张忠孝, 基于图像处理的燃气火焰稳定性检测试验研究. 动力工程学报 2019, 39, (10), 811-817.
[22]董建聪; 张忠孝; 范浩杰; 葛学利; 张剑, 超超临界二次再热机组锅炉燃烧与水动力耦合计算方法研究. 热力发电 2017,, (08), 30-35.
[23]葛学利; 张忠孝; 范浩杰; 商显耀; 董建聪, 热偏差和流量偏差对1000MW超超临界锅炉水冷壁壁温影响的研究. 中国电机工程学报 2018,, (08), 2348-2357+2544.
[24]商显耀; 张忠孝; 董建聪; 范浩杰, 大容量超超临界锅炉水冷壁壁温特性研究. 锅炉技术 2016,, (01), 45-49.
[25]李德龙; 张忠孝; 于娟; 范浩杰; 董建聪; 高昊天, 二次再热器热力计算分室模型的研究. 动力工程学报 2016,, (07), 519-524.
[26]朱明; 张忠孝; 周托; 赵超; 滕叶, 1000MW超超临界塔式锅炉炉内水冷壁壁温计算研究. 动力工程学报 2012, 32, (1), 1-9.
[27]刘旭聃; 张忠孝; 乌晓江; 范浩杰, 700℃超超临界锅炉壁温特性研究. 锅炉技术 2015,, (06), 1-5+31.
[28]滕叶; 张忠孝; 董建聪; 刘旭聃, 1 000 MW超超临界锅炉水冷壁工质温度计算研究. 热能动力工程 2014, 29, (6), 714-718.
[30]葛学利; 张忠孝; 商显耀; 董建聪; 范浩杰, 镍基合金管中CO_2工质700℃超临界传热特性实验研究. 动力工程学报 2018,, (02), 138-144.
[31]安海泉; 张忠孝; 樊俊杰; 江砚池, 高灰熔点煤两段供氧气流床气化实验. 燃烧科学与技术 2018, 24, (02), 146-151.
[32]张剑; 余岳峰; 田正林; 张忠孝; 张翔; 邹洋, 电站锅炉炉膛局部结渣监测与吹灰优化. 锅炉技术 2019, 50, (04), 1-9.
[33]许威; 张剑; 范浩杰; 张忠孝; 孙蔚婷, 宽负荷下灵活二次再热超超临界锅炉调温特性研究. 中国电力 2019, 52, (04), 119-126.
[34]朱志祥; 张忠孝; 于娟; 孙蔚婷, 无氧氛围下NH_3/NO反应机理研究. 热能动力工程 2020, 35, (02), 133-139+167.
[35]江砚池; 张忠孝; 范浩杰; 樊俊杰; 安海泉, 单级-两级膜分离法分离CO_2/CH_4实验研究. 锅炉技术 2020, 51, (02), 73-79.
[36]毕德贵; 于娟; 朱志祥; 张忠孝, 空气分级下主燃区喷氨还原NOx实验研究. 动力工程学报 2020, 40, (4), 337-341.
[37]毕德贵; 张健; 张忠孝; 岳朴杰; 荣燕燕, 分级火焰中喷氨脱硝的试验研究与应用. 工程热物理学报 2017, 38, (05), 1122-1127.