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A budget allocation strategy minimizing the sample set quantile for
initial experimental design

Ziwei Lina,b , Andrea Mattab , and Shichang Dua

aDepartment of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai, P.R. China; bDepartment of Mechanical
Engineering, Politecnico di Milano, Milano, Italy

ABSTRACT
The increased complexity of manufacturing systems makes the acquisition of the system perform-
ance estimate a black-box procedure (e.g., simulation tools). The efficiency of most black-box opti-
mization algorithms is affected significantly by initial designs (populations). In most population
initializers, points are spread out to explore the entire domain, e.g., space-filling designs. Some
population initializers also consider exploitation procedures to speed up the optimization process.
However, they are either application-dependent or require an additional budget. This article pro-
poses a generic method to generate, without an additional budget, several good solutions in the
initial design. The aim of the method is to optimize the quantile of the objective function values
in the generated sample set. The proposed method is based on a clustering of the solution space;
feasible solutions are clustered into groups and the budget is allocated to each group dynamically
based on the observed information. The asymptotic performance of the proposed method is ana-
lyzed theoretically. The numerical results show that, if proper clustering rules are applied, an
unbalanced design is generated in which promising solutions have higher sampling probabilities
than non-promising solutions. The numerical results also show that the method is robust to wrong
clustering rules.
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1. Introduction

As the complexity of manufacturing systems increases, the esti-
mation of a system’s performance (e.g., throughput and lead
time) using a closed-form analytical formula becomes extremely
difficult, even impossible. Some tools for complex system per-
formance evaluation have been proposed and have demonstrated
their power, such as aggregation methods (Li and Meerkov,
2009), decomposition methods (Gershwin, 1987; Dallery et al.,
1988, 1989) and simulation models. In these cases, the acquisition
of the system performance estimates is a black-box process.

To find the optimal or near-optimal system configur-
ation, black-box optimization methods allocate the budget
(one budget allocation means one acquisition of the object-
ive function value) to numerous, even infinite, feasible
solutions. Most black-box optimization algorithms for engin-
eering problems require warm start solutions that, if prop-
erly selected, may help to reduce the computational effort
and improve the quality of the solution. Having a good ini-
tial population can increase the convergence speed of popu-
lation-based searching algorithms, such as Particle Swarm
Optimization (PSO) (Kennedy and Eberhart, 1995) and
Genetic Algorithm (GA) (Srinivas and Patnaik, 1994).
Model-based methods, e.g., model reference adaptive search
(Hu et al., 2007) and cross-entropy method (Rubinstein,
1999), can have a more accurate initial sampling probability
distribution, if the initial design points are properly

allocated. In surrogate-based methods, e.g., efficient global
optimization (Jones et al., 1998), the quality of the initial
surrogate model also depends on the initial design.

Currently, uniform sampling and space-filling designs (e.g.,
Latin hypercube sampling (McKay et al., 1979), the minimax
and maximin distance design (Johnson et al., 1990)) are the
most utilized initial designs. In addition, in the field of evolu-
tionary algorithms, several population initialization techniques
are used to increase the diversity, or uniformity, of the gener-
ated design, such as chaotic maps (dos Santos Coelho and
Mariani, 2008; Alatas, 2010), quasi-random sequences
(Maaranen et al., 2004), centroidal voronoi tessellation
(Richards and Ventura, 2004) and simple sequential inhibition
(Maaranen et al., 2007). A review of population initializers can
be found in Kazimipour et al. (2014). In the field of surrogate-
based optimization algorithms, some criterion-based designs
are proposed for specific estimators, e.g., the D-optimal design
(Smith, 1918) minimizes the confidence ellipse volume of the
regression parameters of least-square estimators, whereas the
maximum entropy design (Santner et al., 2003) maximizes the
entropy difference of Gaussian-process estimators’ parameters
before and after experiments. All these designs attempt to
decentralize initial design points to explore the space, i.e., only
exploration is considered.

Indeed, exploring the entire space helps the algorithm to
maintain a global perspective. However, the efficiency of the
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optimization algorithms is critical in reality, such as in real-
time optimization problems. A good solution, which may
not be the optimum, is required in a short time. In this
case, initial designs taking into account the exploitation, i.e.,
having good solutions in the initial population, can help to
speed up the optimization process. Some application-specific
methods have been proposed to create good solutions in the
initial population to improve the efficiency of evolutionary
algorithms, these include Pezzella et al. (2008) and Zhang
et al. (2011) for flexible job-shop scheduling problems, and
Deng et al. (2015) for symmetric traveling salesmen prob-
lems. These methods are developed based on the features of
the studied problems, which may not be applicable in other
problems. Some methods generate an original population
randomly and update the population using the objective
function as a guideline before it is used as the initial popula-
tion in evolutionary algorithms. For example, Rahnamayan
et al. (2007a) apply opposition-based learning (Tizhoosh,
2005) to replace the original points by their opposite points
that have better fitness values; instead of opposite points,
quasi-opposite points are used in Rahnamayan et al.
(2007b); de Melo and Delbem (2012) re-sample the initial
population, applying a machine-learning technique. In these
methods, a pre-optimization process is performed to replace
old points with new sampled points with better fitness val-
ues. This means non-negligible additional computational
effort (i.e., an additional budget in addition to the initial
population size) is required, if the acquisition of the object-
ive function is expensive.

The problem investigated in this article is to develop a
generic population initializer for applications in determinis-
tic optimization problems, in which the objective function is
a black box. A small computational budget is allocated to a
broad feasible domain, with the goal of identifying promis-
ing alternatives from which the search for the optimum will
start. We address the situation in which the acquisition of
the objective function is time-consuming. For example, a
long simulation length is required to estimate the quantile
of the order tardiness, due to the high variability of the sys-
tem. No extra budget, except for the initial design size, is
available. A user-defined number of good solutions are
expected to be contained in the generated design. More spe-
cifically, we try to optimize the corresponding quantile of
the objective function values in the created design.

This article proposes a budget allocation method to create
designs based on an existing clustering on the solution
space. The feasible solutions are clustered into groups based
on specific clustering rules. The budget is allocated to each
group dynamically based on the observed group informa-
tion, i.e., this is a sequential design problem. Different clus-
tering rules can be applied, such as partitioning the feasible
domain into several regions evenly or clustering feasible sol-
utions using techniques such as the k-means method
(MacQueen, 1967). The clustering can also be executed in
transformed spaces. For example, in the problem where the
acquisition of the objective function is time-consuming
(high-fidelity models) but the objective function can also be
roughly and quickly estimated by analytical methods (low-

fidelity models), the alternative solutions can be clustered
based on their low-fidelity outputs. The knowledge
embedded in low-fidelity methods may help to separate
promising solutions from bad solutions. A similar idea
appears in MO2TOS (Xu et al., 2016), in which the original
solution space is transformed into a one-dimensional ordinal
space based on a queuing model.

There are two other classic types of budget allocation prob-
lems. One is the multi-armed bandit problem, in which the
budget needs to be allocated to competing choices. Each selec-
tion provides a random reward from an unknown distribution
specific to the selected choice. The goal of the
budget allocation policy is to maximize the cumulative reward.
The policy will face a dilemma: allocating more budget to the
current best choice, i.e., the choice having the current highest
average payoff, to gain more (exploitation); or allocating more
budget to search for the real best choice (exploration). The
e-greedy method (Sutton et al., 1998) selects the current best
choice with probability 1� e, while with probability e, other
choices are randomly selected. Wiering (1999) combines the
e-greedy method with SoftMax function assigning weights to
choices that are not the current best one. The UCB family
(e.g., UCB1, UCB-Tuned (Auer et al., 2002) and KL-UCB
(Maillard et al., 2011) and Thompson sampling (Thompson,
1933; Russo et al., 2018) are also frequently used to solve this
problem type. A survey on the multi-armed bandit approach
can be found in Burtini et al. (2015).

Ranking and Selection (R&S) procedures are applied to
deal with the other type of budget allocation problems. Budget
is allocated to a set of alternative solutions, which have a sto-
chastic performance, to select the best one. The Probability of
Correct Selection is commonly constrained. The goal of the
budget allocation policy is to separate the real best solution
from the others. In classic R&S, the best solution refers to the
solution with the lowest (or highest) performance expectation.
Optimal Computing Budget Allocation (OCBA), proposed by
Chen et al. (2000), allocates a simulation budget of a certain
size to maximize the approximate probability of correctly
selecting the best solution. Some other algorithms to handle
this problem type are expected value of information (Chick
and Inoue, 2001), knowledge gradient procedure (Frazier
et al., 2009) and indifference-zone procedure (Hong and
Nelson, 2005). Recently, several approaches have been pro-
posed to deal with this type of problems with different defini-
tions of the best solution. For example, in Linz et al. (2016)
and Peng et al. (2019), the best solution is defined as the one
with the optimal quantile.

The goal of the budget allocation method proposed in this art-
icle is to minimize the quantile of the sampled values (i.e., the
objective function values of the sampled solutions). This is differ-
ent from the goals of the multi-armed bandit problem and the
R&S, which maximize the cumulative sampled values and separ-
ate the best group (considering one group is one solution with
stochastic performance) from other groups, respectively. The
research contributions of this article are summarized below:

1. A generic population initializer is proposed to generate
an unbalanced design, in which more budget is

40 Z. LIN ET AL.



allocated to promising regions. Currently, most initial
designs consider only exploration by decentralizing
design points. Some existing methods are able to exploit
the promising regions, but they are either application-
specific or require an additional budget in addition to
the initial design size.

2. Closed-form formulas are developed to allocate budget
to existing groups of different solutions, in order to
minimize the quantile of the sampled solutions’ object-
ive function values. Thus, the developed algorithm is
easy to implement in practice.

3. The asymptotic performance of the proposed method
and its robustness to wrong clustering rules are ana-
lyzed theoretically.

The proposed method is tested in designed cases and
applied to a transfer line buffer allocation problem and a
multi-stage manufacturing system server allocation problem.
Numerical results show that, in the studied cases, the pro-
posed method behaves as expected and improves the per-
formance of the applied search algorithms.

The proposed budget allocation method can be used as a
population initializer for optimization problems in several
fields of engineering. It can also be used as a strategy to
allocate budget to competitive choices in other problems
aiming at minimizing a certain quantile, or the minimum,
of all the obtained values. For instance, budgets with differ-
ent sizes can be allocated to search different neighborhoods
based on the quality of the regions in multi-start algorithms;
different numbers of solutions can be sampled from differ-
ent sub-regions in partition-based search algorithms, e.g.,
nested partition (Shi and �Olafsson, 2000, 2009).

This article is organized as follows. Section 2 describes
the problem in a mathematical way. Section 3 describes the
proposed method and analyzes its asymptotic performance.
Section 4 applies the proposed method to cases designed for
testing purposes. Section 5 presents applications of the pro-
posed method to a transfer line buffer allocation problem
and a multi-stage manufacturing system server allocation
problem. Finally, conclusion and guidelines for future devel-
opments are drawn in Section 6.

2. Notation and problem description

A minimization problem, in which the objective function
yð�Þ is a black box, is considered in this article. The objective
function is deterministic, i.e., no noise is involved in the
acquisition of the objective function values. The decision

variable vector x ¼ ½x1, :::, xd�T is a d-dimensional vector and
D is the feasible domain. An optimization algorithm (e.g.,
GA, PSO), in which an initial design is created at the first
step, is applied to find the (near) optimal solution.

Assume that all the feasible solutions have been clustered
into K groups based on specific clustering rules. A budget of
size N is allocated to these K groups applying a
budget allocation policy S ¼ ½n1, :::, nK �, where nk is the
total budget size allocated to group k. A corresponding
number of solutions are sampled from different groups to

create the initial design Sðn1, :::, nK , nÞ, where n presents the
random noise caused by the sampling. The policy used
inside one group to sample new solutions is user-defined.
Denote the ith solution sampled from group k as xk, i: We
introduce the following assumption:

Assumption 1. The objective function values of solutions
sampled from group k, i.e., yðxk, iÞ,8i, are absolutely continu-
ous random variables, which are independently and identi-
cally distributed with probability density function (pdf) fkð�Þ
and cumulative distribution function (cdf) Fkð�Þ, where fkð�Þ
is positive and differentiable at any point.

A user-defined number, denoted as r (r < N=2), of good
solutions are expected to be contained in the generated sam-
ple set Sðn1, :::, nK , nÞ: This means that the objective func-
tion value of the rth best solution in the sample set, which
is the r/N-quantile of the objective function values in the
created sample set, is expected to be minimized. Let a ¼
r=N, where a < 0:5, and qaðSðn1, :::, nK , nÞÞ be the
a-quantile of the objective function values in the created
initial design, the problem investigated in this article can be
formulated as follows:

min
n1, :::, nK

EðqaðSðn1, :::, nK , nÞÞÞ,

s:t:
XK
k¼1

nk ¼ N,

nk 2 N, 8k,

(1)

where

qaðSðn1, :::, nK , nÞÞ ¼ min
s

s

����XK
k¼1

Xnk
i¼1

IfxjyðxÞ�sgðxk, iÞ � aN; s 2 R

( )
,

and IfxjyðxÞ�sgð�Þ is the indicator function. The objective
function of the problem in expression (1) is the expectation
of the a-quantile. The first constraint shows the budget con-
straint. The second constraint indicates that nk, 8k are non-
negative integers.

For the sake of simplicity, the notations used in the pro-
posed method are listed below.

N : the total budget size
K : number of groups clustered
nk : the total budget size allocated to group

k,
PK

k¼1 nk ¼ N
Sðn1, :::, nK , nÞ : the final sample set
a : the fraction of good solutions in Sðn1, :::, nK ,

nÞ, a ¼ r=N
Ns : the total allocated budget size after stage s
ns, k : the total allocated budget size in group k after

stage s
l̂k, r̂

2
k : the sample mean and sample variance of

yð�Þ in group k

b̂ : the current best group
ŝ : the estimated threshold
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3. Budget allocation for quantile minimization

The problem in expression (1) is difficult to solve, due to
the calculation of the order statistic expectation of samples
from different distributions. Therefore, we approximate the
problem to a simpler one. According to the definition of the
qaðSðn1, :::, nK , nÞÞ in Section 2, r ¼ aN solutions in the final
sample set have objective function values smaller than or
equal to qaðSðn1, :::, nK , nÞÞ: Instead of minimizing the
expectation of qaðSðn1, :::, nK , nÞÞ as in expression (1), we
propose an effective approximate formulation, which is min-
imizing a threshold s so that expected aN solutions in the
final sample set have objective function values less than or
equal to s:

min
s, n1, :::, nK

s,

s:t: E
XK
k¼1

Xnk
i¼1

IfxjyðxÞ�sgðxk, iÞ
 !

¼ aN,

XK
k¼1

nk ¼ N,

s 2 R, nk 2 N, 8k,

(2)

where IfxjyðxÞ�sgð�Þ is the indicator function, xk, i is the ith solu-
tion sampled from group k and yðxk, iÞ is the objective function
value at xk, i: The first constraint limits the expected number of
solutions in the final sample set whose objective function val-
ues are under the threshold s. The second constraint shows
the budget constraint. The third constraint indicates that s is
real and nk,8k are non-negative integers. The above problem
approximation moves the expectation from the objective func-
tion to the constraint. In this way, the calculation of the order
statistic expectation is avoided, which makes this problem eas-
ier to be solved. Under Assumption 1, the approximated prob-
lem can be further simplified as shown in Proposition 1 and
the proof of Proposition 1 can be found in Appendix A.
Numerical results show that the problem in expression (3) is a
reasonable approximation of the problem in expression (1)
(more details can be found in Appendix B).

Proposition 1. Under Assumption 1, the problem in expres-
sion (2) can be simplified as

min
s, n1, :::, nK

s,

s:t:
XK
k¼1

nkFkðsÞ ¼ aN,

XK
k¼1

nk ¼ N,

s 2 R, nk 2 N,8k:

(3)

In the following, Section 3.1 presents the optimal
budget allocation solution of the approximated problem in
expression (3) when the group information, i.e., Fkð�Þ, 8k, are
known in advance. Section 3.2 proposes a heuristic algorithm
to allocate budget to each group dynamically when the group
information are unknown, and analyzes the asymptotic per-
formance of the proposed heuristic algorithm as the budget
size increases.

3.1. Optimal policy when group information are known

After the clustering, if Assumption 1 holds and we know all
the group information in advance, the optimal solution of
the approximated problem in expression (3) has a closed
form as shown in Theorem 1.

Theorem 1. Assumption 1 holds, all the group a-quantiles,
i.e., F�1k ðaÞ,8k, are known and F�1i ðaÞ 6¼ F�1j ðaÞ, 8i 6¼ j,

where F�1k ð�Þ is the inverse function of Fkð�Þ, the optimal solu-
tion of the approximated problem in expression (3) is

b ¼ argminkF�1k ðaÞ
s� ¼ F�1b ðaÞ
n�b ¼ N

n�k ¼ 0,8k 6¼ b

,

8>>>><
>>>>:

i.e., allocating all the budget to the best group b, which has
the smallest group a-quantile.

The problem in expression (3) is a mixed-integer problem.
To prove Theorem 1, we first relax the integer constraints on
nk. In the relaxed problem, only one solution satisfies the Fritz
John conditions (Bazaraa et al., 2013), which is the one pro-
vided by Theorem 1. Therefore, if this relaxed problem has a
local optimum, it must be this solution. Then, we use the KKT
second-order sufficient conditions (Bazaraa et al., 2013) to
prove that this solution is a strict local optimum of the relaxed
problem, which is also the global optimum since it is the only
local optimum. This solution also satisfies the relaxed integer
constraints. Thus, it is the global optimal solution of the prob-
lem in expression (3).

Proof of Theorem 1. Relax the integer constraints in expres-
sion (3) from nk 2 N, 8k to nk � 0, nk 2 R,8k: The decision
variables of the relaxed problem are defined in the real
number set. Under Assumption 1, the objective function
and the constraints of the relaxed problem are all continu-
ously differentiable at all feasible solutions. Denote the
equality constraints as hið�Þ ¼ 0, i ¼ 1, 2 and the inequality
constraints as gkð�Þ � 0, k ¼ 1, :::,K:

h1ðs, n1, :::, nKÞ ¼
XK
k¼1

nkFkðsÞ � aN,

h2ðs, n1, :::, nKÞ ¼
XK
k¼1

nk � N,

gkðs, n1, :::, nKÞ ¼ nk, 8k:
The gradients of the above equations are

rh1ðs, n1, :::, nKÞ ¼
XK
k¼1

nkfkðsÞ, F1ðsÞ, :::, FKðsÞ
" #T

,

rh2ðs, n1, :::, nKÞ ¼ 0, 1, :::, 1½ �T ,
rgkðs, n1, :::, nKÞ ¼ ekþ1,8k,

where ekþ1 is a ðK þ 1Þ-dimensional vector whose ðkþ 1Þth
element is one and the rest elements are zero.

If ½s�, n�1, :::, n�K �T is a local optimum of the relaxed problem, it
must satisfy the Fritz John conditions (Bazaraa et al., 2013), i.e.,
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there exists a non-zero vector k ¼ ½k0, kk ,8k 2 I a , kKþ1, kKþ2�T ,
in which I a ¼ fk : n�k ¼ 0g and kk � 0,8k 2 I a [ f0g, such
that:

k0rf ðs�, n�1, :::, n�KÞ �
X
k2I a

kkrgkðs�, n�1, :::, n�KÞ

�
X
i¼1, 2

kKþirhiðs�, n�1, :::, n�KÞ ¼ 0,

where rf ðs�, n�1, :::, n�KÞ ¼ e1 is the gradient of the objective
function of the relaxed problem.

From the Fritz John conditions and the constraints of the
relaxed problem, we have the following equations:

k0 � kKþ1
XK
k¼1

n�kfkðs�Þ
 !

¼ 0 ð4aÞ

kk þ kKþ1Fkðs�Þ þ kKþ2 ¼ 0,8k 2 I a ð4bÞ
kKþ1Fkðs�Þ þ kKþ2 ¼ 0,8k 62 I a ð4cÞP

k62I a n
�
kFkðs�Þ � aN ¼ 0 ð4dÞP

k62I a n
�
k � N ¼ 0: ð4eÞ

n�k > 0,8k 62 I a ð4fÞ
n�k ¼ 0,8k 2 I a ð4gÞ
kk � 0, 8k 2 I a [ f0g ð4hÞ
9k 2 I a [ f0,K þ 1,K þ 2g, s:t:kk 6¼ 0 ð4iÞ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:
fkð�Þ is positive for all feasible solutions in the relaxed prob-
lem under Assumption 1. From equations (4a) (4b) (4c)
(4h) (4i), we have k0 > 0 (i.e., a regularity condition holds
for all feasible solutions, the Fritz John conditions are
equivalent to the KKT conditions), kKþ1 > 0 and kKþ2 < 0:
From equations (4c) (4d) (4e), we have Fkðs�Þ ¼ a, 8k 62 I a:
Due to the uniqueness assumption on the group quantiles,
only one element, denoted as b, is not in the set I a, i.e.,
I a ¼ fkjk 6¼ bg, n�b ¼ N, n�k ¼ 0,8k 6¼ b, and s� ¼ F�1b ðaÞ:
From equations (4b) (4c)(4h) and the uniqueness assump-
tion of group quantiles, we have kk > 0, F�1k ðaÞ > s�, 8k 2
I a: Therefore, we have only one solution that satisfies the
Fritz John conditions:

b ¼ argminkF�1k ðaÞ
s� ¼ F�1b ðaÞ
n�b ¼ N

n�k ¼ 0,8k 6¼ b

:

8>>>><
>>>>:

This solution is a KKT point and kk > 0,8k 2 Ia: The
objective function and the constraints of the relaxed prob-
lem are all twice differentiable under Assumption 1. To
prove this solution satisfies the KKT second-order sufficient
conditions (Bazaraa et al., 2013), we define the cone:

G ¼ d

d 6¼ 0

rgkðs�, n�1, :::, n�KÞTd ¼ 0,8k 6¼ b

rhiðs� , n�1, :::, n�KÞTd ¼ 0, i ¼ 1, 2

�������
9>=
>;:

8>><
>>:

G is an empty set, which means this solution satisfies the KKT
second-order sufficient conditions and it is the strict and the
only local optimum, i.e., the global optimum, of the relaxed

problem. In addition, this solution satisfies the relaxed integer
constraints, so it is also the global optimal solution of the
problem in equation (3). Theorem 1 is proved. w

3.2. Allocation strategy when group information
are unknown

In practice, it is unlikely to know in advance the group
information before a large number of observations are avail-
able. In this situation, the most intuitive approach is to esti-
mate the group quantiles by allocating a trial budget to each
group at the first stage. Then, all the remaining budget is
allocated to the current best group according to the
observed information. Nevertheless, this approach has two
drawbacks: (i) numerous samples are required to estimate a
quantile, whereas only a small budget is available for the ini-
tial design; and (ii) the estimated group information could
be biased due to the sampling noise, which means, under a
certain probability, this approach will allocate all the
remaining budget to a wrong group.

To simplify the estimation of the group quantiles and
reduce the sample size required, we further restrict
Assumption 1 as follows:

Assumption 2. The objective function values of solutions
sampled from group k, i.e., yðxk, iÞ, are independently and
identically distributed as normal distribution with mean lk
and positive variance r2k, in which lk and rk are unknown.

Under Assumption 2, the best group in Theorem 1 has a
closed-form expression: b ¼ argminkflk þ zarkg, where za
is the a-quantile of the standard normal distribution. In this
way, non-parametric quantile estimation can be avoided and
the best group can be easily estimated, with few samples,
using the group sample means l̂k and group sample varian-
ces r̂k:

b̂ ¼ argmin
k
fl̂k þ zar̂kg: (5)

Despite Assumption 2 being quite strong, the numerical
results show that the proposed budget allocation method
works well even if Assumption 2 is not satisfied. From equa-
tion (5), we can find that the selection of the a value reflects
the preference among the group mean and the group vari-
ance. If a low a value is used (i.e., only a few good solutions
are required), groups with a high variance are regarded as
good groups, i.e., the proposed method will take the risk of
searching in the group with not only a high mean but also a
high variance, in order to have the chance of obtaining a
very good solution. If a high a value is used (i.e., nearly half
of the initial solutions are of interest), groups with a low
mean are regarded as good groups, i.e., the proposed
method will behave conservatively to ensure that most of
the sampled solutions are acceptable.

The current best group, estimated from the first stage
sampling, may be wrong, due to the small sample size.
Therefore, we are facing a dilemma similar to the multi-
armed bandit problem: to allocate more budget to the cur-
rent best group, or to allocate more budget to search for the
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real best group. The difference between our problem and
the multi-armed problem is the definition of the best group.
We are interested in the group with the smallest quantile,
whereas the multi-armed problem is looking for the group
with the highest mean. To cope with this dilemma, a simple
idea is proposed: let the total budget size allocated to group
k be proportional to the posterior probability that group k is
the best group b, given the observed information.

A heuristic algorithm is developed to allocate the remaining
budget dynamically taking into account the noise introduced by
previous samplings. At a new stage (denoted as s), a fixed size
(denoted as D) of budget is added into the total budget size:

Ns ¼ minfNs�1 þ D,Ng,
and the estimated group means l̂k, the group variances r̂2

k and

the current best group b̂ are updated. Under Assumption 2,
from Theorem 1 we have rk > 0,8k and s� ¼ lb þ zarb �
lk þ zark, 8k, i.e., lb � s� ¼ �zarb and lk � s� � �zark, 8k:
Since a < 0:5 (i.e., za < 0), we have:

0 <
rb

lb � s�
¼ � 1

za
and 0 <

rk
lk � s�

� � 1
za
,8k,

that is, the real best group b has the largest rk
lk�s� : Therefore, we

first estimate the value of the optimal threshold s�, based on
the information estimated from previous sampling, as:

ŝ ¼ min
k
fl̂k þ zar̂kg ¼ l̂b̂ þ zar̂ b̂ : (6)

Then, let ns, k be proportional to the posterior probability
that group k has the largest rk

lk�ŝ :

ns, k ¼ Ns � P rk
lk � ŝ

� ri
li � ŝ

, 8i 6¼ kjl̂j, r̂j, ns�1, j, 8j
� �

, (7)

where ns, k is the total budget size allocated to group k after
stage s and l̂j, r̂

2
j are the sample mean and sample variance

of group j based on ns�1, j previous observations. Proposition
2 provides an approximate way to estimate expression (7)
when there are only two groups.

Proposition 2. If only two groups are available, i.e., K ¼ 2,
Assumption 2 holds and 0 < rk

lk�ŝ < 0:33, k ¼ 1, 2, the ratio

of the total budget sizes allocated to these two groups accord-
ing to expression (7) can be approximated as

ns, 1
ns, 2
� FðC1, 2; ns�1, 1 � 1, ns�1, 2 � 1Þ

FðC2, 1; ns�1, 2 � 1, ns�1, 1 � 1Þ ,

where

Ci, j ¼
1þ 1

ĉ2j
� 1
ns�1, j

1þ 1

ĉ2i
� 1
ns�1, i

, i, j ¼ 1, 2,

ĉk ¼ r̂k

l̂k � ŝ
, k ¼ 1, 2,

Fð�; v1, v2Þ is the cdf of the F-distribution with degrees of free-
dom v1, v2 and l̂k, r̂

2
k, k ¼ 1, 2 are the group sample means

and group sample variances based on ns�1, k observations.

Proposition 2 is proved based on the McKay’s chi-square
approximation for the coefficient of variation (McKay, 1932).

Proof of Proposition 2. Let random variables:

Xk ¼ yðxk, iÞ � ŝ, k ¼ 1, 2:

Under Assumption 2:

Xk 	 Nðlk � ŝ,r2kÞ and ck ¼ rk
lk � ŝ

is the coefficient of variation of the random variable Xk.
McKay’s approximation (McKay, 1932) shows that if 0 <
ck < 0:33, the statistic:

Wk ¼ 1þ 1
c2k

� � ðns�1, k � 1Þĉ2k
1þ ðns�1, k � 1Þ̂c2k=ns�1, k

is approximately distributed as the v2 distribution with
degree of freedom ðns�1, k � 1Þ, where ĉk ¼ r̂k=ðl̂k � ŝÞ is
the estimate of the coefficient of variation based on ns�1, k
observations. Under the assumption of independence, we
can say that when 0 < ci, cj < 0:33 :

Wi, j ¼Wi=ðns�1, i � 1Þ
Wj=ðns�1, j � 1Þ ¼ Ci, j �

1þ 1
c2i

1þ 1
c2j

,

is approximately distributed as the F-distribution with
degrees of freedom ðns�1, i � 1Þ and ðns�1, j � 1Þ, where:

Ci, j ¼
1þ 1

ĉ2j
� 1

ns�1, j

1þ 1
ĉ2i
� 1

ns�1, i

:

Therefore,

P
ri

li � ŝ
� rj

lj � ŝ
jl̂i, r̂i, ns�1, i, l̂j, r̂j, ns�1, j

� �
¼ Pðci � cj ĵci, ns�1, i, ĉj, ns�1, jÞ
¼ PðWi, j � Ci, j ĵci, ns�1, i, ĉj, ns�1, jÞ
� FðCi, j; ns�1, i � 1, ns�1, j � 1Þ,

where Fð�; v1, v2Þ is the cdf of the F-distribution with degrees
of freedom v1 and v2. When only two groups are available,
we have:

ns, 1
ns, 2
¼

Ns � P r1
l1�ŝ �

r2
l2�ŝ jl̂i, r̂i, ns�1, i, i ¼ 1, 2

� �
Ns � P r2

l2�ŝ �
r1

l1�ŝ jl̂i, r̂i, ns�1, i, i ¼ 1, 2
� �

� FðC1, 2; ns�1, 1 � 1, ns�1, 2 � 1Þ
FðC2, 1; ns�1, 2 � 1, ns�1, 1 � 1Þ ,

i.e., Proposition 2 is proved. w

When K¼ 2, Figure 1 shows the percentage of the total
budget that should be allocated to Group 1 after stage s,
according to Proposition 2. As shown in the left figure,
when both groups have the same budget size after the
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previous stage (ns�1, k ¼ 5,8k), more budget should be allo-

cated to the group with a larger r̂k
l̂k�ŝ (i.e., higher r̂k and

lower l̂k). In the right figure, when the r̂k
l̂k�ŝ of both groups

are the same, more budget should be allocated to the group
with a smaller ns�1, k, since less data are observed.
Nevertheless, the gap becomes insignificant as both budget
sizes increase.

When more than two groups are available, i.e., K> 2, we
extend Proposition 2 by using the budget size allocated to

the current best group b̂ as the reference:

ns, k
ns, b̂
¼ FðCk, b̂ ; ns�1, k � 1, ns�1, b̂ � 1Þ

FðCb̂ , k; ns�1, b̂ � 1, ns�1, k � 1Þ , 8k 6¼ b̂, (8)

ns, b̂ ¼ Ns=
XK
k¼1

FðCk, b̂ ; ns�1, k � 1, ns�1, b̂ � 1Þ
FðCb̂ , k; ns�1, b̂ � 1, ns�1, k � 1Þ

 !
, (9)

where

Ci, j ¼
1þ 1

ĉ2j
� 1
ns�1, j

1þ 1

ĉ2i
� 1
ns�1, i

,8i, j,

ĉk ¼ r̂k

l̂k � ŝ
, 8k,

(10)

and Fð�; v1, v2Þ is the cdf of the F-distribution with degrees
of freedom v1 and v2. ns, k, 8k are rounded to integers. Then,
additional maxf0, ns, k � ns�1, kg new solutions are sampled
from group k in the order of the additional sample
size descending.

Algorithm 1 describes in detail how to implement the
proposed method. A small trial budget is allocated to each
group to estimate the group performance at the first-stage
sampling. At each new sampling stage, the total budget size
increases by a fixed size. The estimated group means, group
variances, the current best group and the estimated thresh-
old are updated. The new budget is allocated according to
equations (8) (9) (10). Given the group budget sizes, uni-
form sampling or other sampling methods considering
exploration can be applied to sample new solutions from
each group. This process is repeated until the budget
is exhausted.

Algorithm 1

N,K, a, n1, k, 8k,D  User-defined parameters.
Cluster the feasible solutions into K groups.
s¼ 1.
for k¼ 1 to K do
Sample ns, k solutions from group k.
Calculate group sample mean l̂k and group sample
variance r̂2

k:
end for

Ns ¼
X
k

ns, k:

Calculate b̂ and ŝ using equations (5) and (6).
while N � Ns > 0 do
s ¼ sþ 1:

Ns ¼ minfNs�1 þ D,Ng:
Calculate ns, k, 8k using equations (8) (9) and (10).
Sample maxf0, ns, k � ns�1, kg solutions from group k, 8k:
Update group sample mean l̂k and group sample
variance r̂2

k:

Update b̂ and ŝ using equations (5) and (6).
end while

3.2.1. Asymptotic performance
The sampling noise is considered in Algorithm 1 for the
situation where group information is unknown. Theorem 2
shows that, under Assumption 2, Algorithm 1 converges to
the optimal budget allocation policy in Theorem 1, in
which the exact groups information are known in
advance, when the number of sampling stages approaches
to infinity.

Theorem 2. Under Assumption 2, if a < 0:5,li þ zari 6¼
lj þ zarj, 8i 6¼ j and the number of sampling stages

approaches to infinity, Algorithm 1 converges to the optimal
allocation policy in Theorem 1, which is allocating all the
budget to the group having the smallest a-quantile:

lim
s!1 ns, b=Ns ¼ 1,

where b ¼ argminkflk þ zarkg:

Figure 1. The percentage of the total budget allocated to Group 1. K¼ 2. In the left figure, ns�1, k ¼ 5, k ¼ 1, 2 and in the right figure, r̂k
l̂k�ŝ ¼ 0:1, k ¼ 1, 2:
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We first prove that, as the number of sampling stages
approaches to infinity, the budget sizes allocated to all groups
nk,8k approach to infinity. This involves that the current best

group b̂ approaches to the real best group b. Then, we prove
that as the number of sampling stages approaches to infinity,
the ratio of the budget size allocated to the current best group

b̂ to the total budget size Ns approaches to unity. The detailed
proof can be found in Appendix A.

3.2.2. Robustness to wrong clustering
When an inappropriate clustering rule is applied, it is pos-
sible that all the groups have similar group performances,
i.e., the clustering rule cannot separate the promising solu-
tions from bad ones. Theorem 3 shows that when all groups
have the same means and the same variances, Algorithm 1
tends to allocate equal budget sizes to all groups as the
number of sampling stages approaches to infinity. This
means that if all groups have the same performance, instead
of exploiting one of the groups, Algorithm 1 focuses more
on the exploration searching all the groups. The detailed
proof can be found in Appendix A.

Theorem 3. If a < 0:5,lk ¼ lb,rk ¼ rb, 8k and the number
of sampling stages approaches to infinity, Algorithm 1 con-
verges to allocating equal budget sizes to all the groups, i.e.,

lim
s!1 ns, k=ns, b̂ ¼ 1,8k 6¼ b̂:

4. Numerical results

The proposed method is tested in designed cases to analyze
its performance under different circumstances and the influ-
ence of the user-defined parameters. Then, it is applied to a
Griewank function to show the effect of the applied cluster-
ing rules.

4.1. Comparison of budget allocation strategies
among groups

In this section, we assume that all the feasible solutions are
already clustered. We would like to investigate the benefit of
using Algorithm 1 to allocate the budget among groups. The
following five budget allocation strategies are applied:

BAQM: Budget Allocation for Quantile Minimization. The
budget is allocated using Algorithm 1, i.e., the pro-
posed method.

AATB: Allocate all the added budget to the current best

group b̂ at each stage s:

ns, b̂ � ns�1, b̂ ¼ Ns � Ns�1 and ns, k�ns�1, k ¼ 0, 8k 6¼ b̂:

Modified e-greedy: The new budget is allocated to the cur-

rent best group b̂ with probability 1� e and allocated to
other groups with probability e. The e-greedy method is fre-
quently used for classic multi-armed bandit problems. It is
applied here with the definition of the best group modified

using the quantile instead of the mean as the criterion. The
aforementioned AATB method can be regarded as an
extreme e-greedy method with e ¼ 0: In the following
experiments, the e value is selected as 0.1 according to pre-
liminary analysis.

OCBA: Optimal Computing Budget Allocation. The budget
is allocated, at each stage s, using the OCBA formulas pro-
posed by Chen et al. (2000):

ns, i
ns, j
¼ r̂i=ðl̂b0 � l̂iÞ

r̂j=ðl̂b0 � l̂jÞ

 !2

, 8i 6¼ j 6¼ b0,

and

ns, b0 ¼ r̂b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i6¼b0

n2s, i
r̂2
i

vuut ,

where b0 ¼ argminfl̂k, 8kg: The OCBA method is fre-
quently applied to stochastic problems to maximize the
approximate probability that the selected design b0 is the
best design (the design having the lowest mean). From
another perspective, the OCBA method attempts to separate
the mean of the current best group from the other groups,
which is different from the goal of this article. However, the
OCBA method also assigns more budget to the group with a
higher variance and a lower mean, which is similar to our
algorithm. Thus, it is also applied in the experiments as a
budget allocation pattern reference.

EBA: Equal Budget Allocation. The budget is allocated
equally to all groups:

nk ¼ N=K, 8k ¼ 1, :::,K,

where the indivisible budget is allocated arbitrarily.

The first four strategies are applied dynamically with a
fixed budget size added to the total budget size at each sam-
pling stage. The EBA is applied in one stage. The EBA is
used as a benchmark in the following experiments.

In the following experiments, 10 000 replications are exe-
cuted. For the sake of simplicity, the first-stage sampling
sizes are assumed to be the same among all groups,
i.e., n1, i ¼ n1, j,8i, j:

4.1.1. Effect of group parameters
Six cases are considered in this section. In each case, five
groups are clustered. Assumption 2 holds, i.e., the objective
function values in each group are independently and nor-
mally distributed. Group means and group standard devia-
tions are presented in Table 1. These parameters are
designed to test the behavior of different strategies in

Table 1. The distribution parameters of each group.

System ID l r

1 ½10, 15, 20, 25, 30� ½4, 4, 4, 4, 4�
2 ½10, 15, 20, 25, 30� ½6, 6, 6, 6, 6�
3 ½10, 15, 20, 25, 30� ½3, 4, 5, 6, 7�
4 ½10, 15, 20, 25, 30� ½7, 6, 5, 4, 3�
5 ½10, 10, 10, 10, 10� ½7, 6, 5, 4, 3�
6 ½10, 15, 20, 25, 30� ½1, 5, 5, 5, 5�
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different conditions. A budget of N¼ 100 is available and
the first stage sampling sizes are n1, k ¼ 3,8k: We are inter-
ested on the a-quantile (a ¼ 0:05) of the objective function
values in the final sample set, i.e., the fifth smallest observa-
tion, and only one budget size is added at each stage (i.e., D
¼ 1). Under the given a value, the first group is the best
group in all the cases except the last one in which the
second group is the best group.

Figure 2 shows the average total budget sizes allocated to
different groups, i.e., nk, using different budget allocation
strategies (the left figures) and the empirical cdf of the
a-quantile of the objective function values in the final sam-
ple set among 10 000 replications (the right figures). The
first conclusion is that the first four strategies all allocate, on
average, most of the budget to the best group, except the
OCBA in Case 3, the AATB and the modified e-greedy in
Case 6.

In most cases, the AATB behaves slightly better than the
BAQM under a certain probability (the first part of
the AATB’s empirical cdf is on the left-hand side of that of
the BAQM). This is because the AATB will not waste
budget exploring other groups once it identifies the best
group. However, under a certain probability, the AATB does

not identify the real best group and allocates most of the
budget to a wrong group. This is the reason why the tail of
the AATB’s empirical cdf collapses. As shown in Case 2 and
Case 4, the AATB has more difficulty in identifying the best
group when the performances of good groups have large
variability. Compared with the AATB, the BAQM wastes a
small budget in exploration, but significantly reduces the
probability that poor designs are generated, especially when
the group performances are highly varied.

It can be found that compared with the AATB, the modi-
fied e-greedy also tries to improve the identification of the
best group by using some budget for exploration. The per-
formance of the modified e-greedy is highly sensitive to the
selection of the e value. A large e value can improve the
situation that the tail of the empirical cdf collapses, but it
will waste too much budget once the real best group is iden-
tified. The modified e-greedy can be improved by reducing
the e value as the sampling stage increases. Nevertheless,
additional effort are required to determine the adaptive
function and to tune the adaptive parameter for the e. The
BAQM has a better performance than the modified e-greedy
when good groups have large variability, as in Case 2, Case
4, and Case 6. When the variability of good groups is small,

Figure 2. The average group budget size (left) and the empirical cdf of the a-quantile (right). N ¼ 100, a ¼ 0:05, n1, k ¼ 3,8k,D ¼ 1: A total of 10 000 replications
are executed.
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the BAQM can achieve a similar performance to that of the
modified e-greedy without the tuning of the parameters.

The OCBA does not perform well when the best group
has a small variability. In Case 3, the OCBA allocates more
budget to the second group, however, the first group is the
best group. Indeed, the goal of the OCBA is to separate the
mean of the best group from the means of the other groups.
In this case, the variance of the first group is small.
Allocating more budget to the second group enables this
goal to be achieved more quickly. This is also the reason
why the OCBA has a good performance in Case 6, in which
the best group is the group that has the largest variance and
a small mean.

4.1.2. Effect of algorithm parameters
In this section, we investigate the effect of the user-defined
parameters (N, a, n1, k,8k,D) in the proposed
budget allocation method.

In Figure 3, the proposed method is applied to Case 2
with parameters a ¼ 0:05, n1, k ¼ 3,8k,D ¼ 1 and different
total budget sizes N. The y-axis shows the proportions of
the total budget being allocated to different groups, i.e.,
nk=N: As the total budget size increases, the proportion of
the total budget allocated to group 1 (the best group) climbs
quickly at the first iterations, then slowly tends to one. This

is consistent to Theorem 2 that, as the number of sampling
stages increases, the proposed method tends to allocate
more budget to the real best group and converges to the
optimal budget allocation in Theorem 1.

In Figure 4, Case 6 is considered, in which group 1 has
the lowest mean and a much smaller variance compared
with the other groups. The proposed method is applied with
parameters N ¼ 100, n1, k ¼ 3,8k,D ¼ 1: The average budget
size allocated to each group by the proposed method with
different a values is presented in the figure. A higher budget
size is assigned to group 1 (the group with the lowest mean)
when the a value is large. When the a value is small, the
method focuses more on group 2 (the group with the
second lowest mean but a larger variance). This is consistent
with the discussion about the selection of the a value in
Section 3.2.

In Figure 5, the proposed method is applied to Case 2
with parameters N ¼ 100, a ¼ 0:05, n1, k values varying
between 2 and 18, and D value varying between 1 and 90.
The color presents the average budget size allocated to the
best group among 10 000 replications. The lighter the color,
the higher the budget size assigned correctly.

A small D value helps to allocate budget correctly inde-
pendent of the first stage sampling sizes n1, k: Nevertheless, a
small D value, i.e., many sampling stages, may be a draw-
back in some cases, such as a fixed setup time is required to
start a simulation model or when extensive parallel comput-
ing power is available. Given the D value, the selection of
the first stage sizes n1, k also affects the budget allocation
results. Large n1, k values waste budget in the first stage sam-
pling whereas small n1, k values may result in wrong alloca-
tion in the following stages, due to of the biased estimated
group information. As the selected D value increases, the
corresponding optimal n1, k values increase as well.

4.1.3. Effect of group distribution types
In this section, we investigate the effect of the group distri-
bution types in the proposed budget allocation method. The
goal is to test the impact of Assumption 2.

We keep the same group means and group variances as
in Case 2 and change the distribution type of the values in
each group. Six new cases are considered. Table 2 shows the
distribution types of different cases and Figure 6 shows the

Figure 3. The proportions of the total budget allocated to different groups as
N increases. a ¼ 0:05, n1, k ¼ 3,8k and D ¼ 1. A total of 1000 replications
are executed.

Figure 4. The average group budget sizes with varying a values. N ¼
100, n1, k ¼ 3,8k and D ¼ 1. A total of 10 000 replications are executed.

Figure 5. The average budget size allocated to the best group with varying
n1, k and D values. N¼ 100 and a ¼ 0:05: A total of 10 000 replications
are executed.
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pdf shapes of the values in group 1 in different cases. In
Case 9 and Case 10, the beta distributions are scaled to
meet the same group means and group variances as in Case
2. Multi-modal distributions are considered in Case 11
whose pdf presents the shape of two triangles connected
together as shown in Figure 6. In Case 12, the five groups
follow different distribution types, which are the distribution
types from Case 7 to Case 11, respectively. As in the previ-
ous analysis, all the strategies are executed dynamically
with N ¼ 100, a ¼ 0:05, n1, k ¼ 3, 8k,D ¼ 1:

Figure 7 shows the empirical cdf of the a-quantile of the
objective function values in the final sample set in different

cases. Compared with the AATB, the BAQM significantly
reduces the probability that poor designs are generated by
wasting only a limited amount of budget on exploration. In
most cases, the BAQM performs better than the modified
e-greedy. It also has better behavior than the OCBA if the
group distribution types are unimodal. If the group distribu-
tion type has a shape that is particularly different from the
normal distribution, the BAQM identifies the wrong best
group under a certain probability, but it is still more robust
than the AATB. Overall, even if Assumption 2 does not
hold, the proposed budget allocation method works well.

4.2. Effect of clustering rules

In this section, the proposed budget allocation method is
applied to the Griewank function:

y ¼ 1þ 1
4000

x21 þ
1

4000
x22 � cos ðx1Þ cos x2ffiffiffi

2
p
� �

,

and the goal is to minimize the Griewank function in the feas-

ible domain ½x1, x2�T 2 ½�4, 4�2: In this case, two clustering
rules are applied by partitioning the original solution space
into different regions as shown in Figure 8. In the left figures,
the objective function values at different locations are pre-
sented by different colors (blue indicates promising regions)
and the numbers are the groups’ labels. The right figures show
the box-plot of the total budget size allocated to each group
among 10 000 replication, using the proposed method with
parameters N ¼ 100, a ¼ 0:05, n1, k ¼ 3,8k,D ¼ 1:

The first clustering rule partitions the feasible domain into
four regions that have similar objective function performan-
ces. This partitioning cannot separate good solutions from bad

Table 2. The distribution types in different cases.

Case ID Distribution type

7 Symmetric triangular distribution
8 Uniform distribution
9 Scaled beta(1,2)
10 Scaled beta(2,1)
11 Multi-modal distribution
12 Mixed distribution types among groups

Figure 6. The pdf of the objective function values in Group 1 in different cases.

Figure 7. The empirical cdf of the a-quantile. N ¼ 100, a ¼ 0:05, n1, k ¼ 3,8k,D ¼ 1: A total of 10 000 replications are executed.
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ones and no region (group) dominates other regions. The pro-
posed method allocates, on average, equal budget sizes to each
group. This is consistent with Theorem 3. The proposed
method focuses more on the exploration in this situation.

The second clustering rule partitions the feasible solution
space into nine regions that almost separate promising areas
from non-promising ones. The proposed method allocates, on
average, most of the budget to group 5, which is the best
group. Groups 1, 3, 7, and 9 also have higher budget sizes than
the other four groups since better performances are identified.

5. Applications to manufacturing systems

In this section, the proposed method is tested on a buffer
allocation problem of a transfer line and a server allocation
problem of a multi-stage manufacturing system with re-
entries to generate initial designs for selected black-box opti-
mization algorithms. In addition, an example of using
multi-fidelity information to cluster feasible solutions is pre-
sented in Section 5.2.

5.1. A transfer line buffer allocation problem

This section is to test the impact of using the proposed
method as a population initializer in optimization problems.
In the experiments, a transfer line is considered with data

collected from a vehicle injector assembly line. It is com-
posed of 13 stations that are connected by buffers with

capacities denoted as x ¼ ½x1, :::, x12�T : The block after ser-
vice rule is applied. It is assumed that the first station is
never starved and the last station is never blocked. The
processing times are deterministic and the line is well bal-
anced in terms of the processing time, i.e., the processing
times on all stations are close. For the sake of simplicity, we
assume that the processing times, are all equal to the average
processing time and this time is taken as the time unit. Each
station has a probability pi that it will stop in one time unit,
and the repair probability in one time unit is denoted as ri.
Table 3 presents the estimated pi, ri values and the availabil-
ity of each station ei, 8i: The mean throughput of the
studied line is evaluated by the DDX algorithm (Dallery
et al., 1988), denoted as thDDXðxÞ:

The problem investigated in this section is to minimize
the total buffer capacity with a throughput satisfaction:
thtarget ¼ 0:83: We formulate the problem using a penalty
function:

minx
X12
i¼1

xi þ hðthtarget � thDDXðxÞÞþ
X12
i¼1

xi � 400, xi � 3, xi 2 N,8i
�����

)
,

(

where hðthtarget � thDDXðxÞÞþ indicates that the value of the
penalty function is equal to zero if the throughput target is

Figure 8. The clustering rules on the contour of the Griewank function (left) and their corresponding budget allocation information (right). In the left figures, the
objective function values at different locations are presented by different colors. A total of 10 000 replications are executed.
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satisfied and equal to the gap multiplied by a large value h,
if the throughput target is not satisfied. The value of h is
selected as 5000 in the experiments. Similar results can be
found with the h value varying from 4500 to 10 000. The
upper bound of the total buffer capacity is set to narrow
down the search space. The lower bound of each buffer is
set to avoid errors in the execution of the DDX method. A
GA is applied to search for the optimal buffer allocation
with population size N¼ 50 and other settings being the
default values in Matlab.

The initial population is generated using the proposed
method with a ¼ 0:2, n1, k ¼ 3,8k,D ¼ 1: Feasible solutions
are clustered into two groups, 10 groups and 16 groups in
different experiments based on two criteria: (i) whether the
capacity of each buffer in the solution is correlated to
the mean availability of the adjacent machines; and (ii) the
range to which total buffer capacity of the solution belongs.
More details can be found in Appendix C. Uniform sam-
pling is applied within a group.

The best solution found during the experiments is x� ¼
½3, 3, 8, 17, 46, 44, 26, 4, 3, 3, 3, 3� with objective function value
163.6 and throughput 0.8299. Figure 9 shows the average of
the current best objective function values at different genera-
tions in the GA algorithm. A total of 200 replications are
executed and the initial population is re-sampled in each
replication. The label “2 groups” indicates that in the pro-
posed method, the feasible solutions are clustered using only
the first criterion. Compared with uniformly sampling the
initial population, using the initial population generated by
the proposed method improves the efficiency of the GA
algorithm significantly in the studied case, even though only
the first criterion is used for clustering. Further separating
the solutions based on the total buffer capacity (e.g., label
“10 groups”) can make the characteristics of good solutions
more specific, which also helps the optimization. However,
if there are too many groups (e.g., “16 groups” in Figure 9),
this advantage is counterbalanced by the loss of the ability

for exploitation in the proposed method, because most of
budget is used for exploration in the first stage sampling.

5.2. A multi-stage manufacturing system server
allocation problem

The proposed budget allocation method is applied to a ser-
ver allocation problem of a multi-stage manufacturing sys-
tem with re-entries to generate the initial design. A fixed
number of servers are assigned to six workstations to min-
imize the 80% quantile of the order lead times. The order
lead time quantile is estimated by a highly-detailed simula-
tion model (high-fidelity model) and its execution is time-
consuming. Two analytical methods (low-fidelity models),
which can provide fast but biased estimates on the order
lead time, are used to cluster the feasible solutions.

In real-world systems, it is common that the acquisition
of the high-fidelity estimation of the system performance
(highly-detailed simulation response or data from the field)
is expensive (or time-consuming). Low-fidelity estimates
(from analytical methods or low-detailed simulation models)
are biased, but easy and fast to obtain. In this section, we
present a way to cluster feasible solutions in this kind of
application and show the benefits of using the proposed
method as a population initializer in search algorithms.

5.2.1. System description
A multi-stage manufacturing system composed of six work-
stations is producing two types of parts. Each workstation
has several identical servers (machines or operators) and
each part type passes through different workstations follow-
ing a specific sequence. Table 4 presents the production
sequence of each part type, the mean and the standard devi-
ation of their processing time at each workstation. The proc-
essing times are independently and lognormally distributed.
The transportation times between workstations are assumed
to be negligible and the buffer capacities in between are
assumed to be infinite. The first-come first-served rule is
applied to each workstation.

Orders arrive in batches. A single order contains only
one part type. Once an order arrives, the system starts to
produce this part type and when all the parts in this order
are produced, they are delivered at the same time. The
arrival rates of different part types are 1/130 and 1/70 with
batch sizes 150 and 100, respectively. The inter-arrival times
of the orders are independently and exponentially
distributed.

Figure 9. The average of the current best objective function value as the num-
ber of generations increases. A total of 200 replications are executed.

Table 3. The stoppage information of each station.

Station ID S5 S7 S8 S1-S4, S6, S9-S13

pi 0.0038 0.0044 0.0022 0.0009
ri 0.0209 0.0542 0.0444 0.0976
ei ¼ ri=ðri þ piÞ 0.846 0.925 0.953 0.991

Table 4. The production sequence, the mean and the standard deviation of
the processing times.

Part type 1 Part type 2

Workstation Mean (h) Std (h) Workstation Mean (h) Std (h)

1 2 0.25 2 5 0.8
3 1.6 0.2 4 4.5 0.19
4 3.5 0.15 3 2.5 0.28
5 4 0.25 1 2.2 0.25
6 3.5 0.4 6 3 0.45
3 2.5 0.28 – – –
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The key performance indicator is the order lead time, i.e.,
the duration between the order arrival time and the order
delivery time. The goal of this problem is to assign a total of
65 servers to these six workstations to minimize the 80%
quantile of the order lead times. Denote the decision varia-
bles, i.e., the server numbers at different workstations, as

x ¼ ½x1, :::, x6�T : In order to satisfy the demands, server num-
bers have lower bounds, which are ½6, 8, 9, 11, 5, 9� for the six
workstations, respectively. Therefore, a total of 26 334
assignment solutions are feasible.

The objective function (i.e., the 80% quantile of the order
lead times) is calculated using a highly-detailed simulation
model, denoted as yhð�Þ, with simulation length 1
 107

hour, warm-up length 1:5
 105 hour and 10 independent
replications. The average length of the half confidence inter-
val of the mean lead time is about 2% of its estimate. All
the feasible solutions are evaluated and their simulation
responses are regarded as the exact objective function values
in the following experiments, i.e., we assume the objective
function is deterministic in execution. On the average, it
takes about 9.5minutes to obtain a simulation output using
a laptop (Intel(R) Core(TM) i7-6600U CPU @ 2.6GHz
2.81GHz, RAM 16GB), which means about 174 days to
evaluate all the feasible solutions.

In addition to the simulation model, two kinds of analyt-
ical method are also applied. One is an Open Jackson
Network, denoted as yl1ð�Þ, which assumes all inter-arrival
times and processing times are independently and exponen-
tially distributed. Also, the parts in the same order are
assumed to arrive one by one rather than in batches. The
M=M=c formulas are used in the Open Jackson Network

and the average system time is used as the estimation of the
objective function. The other analytical method, denoted as
yl2ð�Þ, is developed assuming there is no interaction between
different orders and that the processing times are determin-
istic. Compared with the simulation model, these two ana-
lytical methods are fast in execution. They require about a
total of 5 seconds and 0.5 seconds to run all the feasible solu-
tions in the same laptop, respectively.

In the analyzed case, the optimal solution is x� ¼
½8, 11, 12, 14, 8, 12�T with high-fidelity estimate of the 80%
quantile of the order lead times yhðx�Þ ¼ 222 hours: The
low-fidelity estimates of the optimal solution are yl1ðx�Þ ¼
18 hours and yl2ðx�Þ ¼ 69 hours:

5.2.2. Effect of low-fidelity information
K¼ 4 groups are clustered based on the two analytical meth-
ods described above, as well as a third low-fidelity model
which is defined as

yl3ðxÞ ¼ 50� yl1ðxÞ:
The scatter plots of the analytical method outputs (the x-
axis) versus the simulation responses yh (the y-axis) and the
clustering information are as shown in Figure 10 (top fig-
ures), in which the numbers from “1” to “4” indicate the
group IDs. Notice that Assumption 2 does not hold in the
analyzed case.

As shown in Figure 10, yl1 shows a significant positive
correlation with yh and provides a good reference for the
selection of promising solutions. However, this knowledge
cannot be known in advance and it could vary case by case.

Figure 10. The clustering rules (top figures) and their empirical sampling pdf on the simulation responses (bottom figures). Clustering rules (a) (b) and (c) are based
on the low-fidelity models yl1 , yl2 and yl3 , respectively. The numbers from “1” to “4” indicate the group IDs. N ¼ 100, a ¼ 0:05, n1, k ¼ 2,8k,D ¼ 1: A total of 10 000
replications are executed.
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The selected low-fidelity models may give useless informa-
tion, like yl2 , or worse, erroneous information is provided,
such as yl3 : In this situation, poor initial designs will be gen-
erated if we pick up solutions with good low-fidel-
ity estimates.

The bottom figures in Figure 10 show the empirical sam-
pling pdf on the simulation responses when different
budget allocation methods are applied. The proposed
method is applied with parameters N ¼ 100, a ¼ 0:05, n1, k ¼
2,8k,D ¼ 1 and uniform sampling is applied within a group.
The label “Uniform Sampling” means solutions are uni-
formly sampled from the whole feasible domain.

Using the proposed budget allocation method enables the
solutions with a lower objective function value to have
higher sampling probabilities, whereas less promising solu-
tions are less likely to be sampled, if proper clustering rules
are applied, such as clustering rule (a) and (c). The average
budget sizes allocated to different groups in clustering
rule (a) and (c) are around ½88:8, 3:7, 3:6, 3:9� and ½3:9,
3:6, 3:7, 88:8�, respectively. The case of clustering policy (c)
shows that the proposed method can also have a good per-
formance even if the selected low-fidelity provides a wrong
ranking on the feasible solutions.

If the selected clustering rule does not provide much
help, the proposed method tends to allocate similar budget
sizes to all groups and behaves similarly to uniform sam-
pling, such as clustering rule (b). The average budget sizes
allocated to different groups in clustering rule (b) are
around [31,35,23,11].

5.2.3. Benefit of good initial designs
A local search algorithm is applied to this problem to find
the optimal server allocation with a total simulation budget
size of 800 for the optimization. At the first step, N¼ 20 ini-
tial points are sampled according to a specific sampling pol-
icy. The sampled points are selected as starting points in
ascending order of their high-fidelity performance. When a
starting point is selected, the algorithm searches its neigh-
borhood and moves to the best of its neighbor points in
each iteration until it reaches a local optimum. Then, the
algorithm moves to the next starting point and repeats the

local search procedure until the simulation budget is
exhausted. The neighborhood of a point x0 is defined as:

Nðx0Þ ¼ fxjx ¼ x0 þ ei � ej, 8i, j, s:t:jji� jjj ¼ 1g,
where ei is a six-dimensional vector whose ith element is
one and the remaining elements are all zero.

The performance of the applied local search algorithm
with starting points sampled by the proposed
budget allocation method is compared to that with starting
points uniformly sampled from the feasible domain. The
proposed sampling method is applied with parameters N ¼
20, a ¼ 0:05, n1, k ¼ 2, 8k,D ¼ 1 and the feasible solutions
are clustered using clustering rule (a) as shown in Figure 10.
The experiment is repeated 5000 times and the starting
points are re-sampled in each replication.

Figure 11 shows the median of the current optimal object-
ive function value among the 5000 replications, as the simula-
tion budget increases. Compared with uniformly sampling the
starting points, using the proposed budget allocation method
in the applied local search algorithm can save about 29% of the
simulation budget, according to the median value among the
5000 replications, if proper clustering rules are applied.

Figure 12 shows the histogram of the total simulation budget
required to reach the global optimum among the 5000 replica-
tions. The last column indicates the number of replications in
which the global optimum is not found within the given simula-
tion budget. Using the proposed budget allocation method in
this case can save the budget required to reach the global opti-
mum. It also reduces the frequency that the global optimum is
not found within the given budget.

5.3. A note on application

The proposed method is useful when a clustering strategy,
which is developed based on some knowledge on the studied
problem, is applicable but the goodness of the groups can-
not be guaranteed. The proposed method can identify which
groups are good in terms of the quantile of the objective
function values and allocate larger evaluation budgets, which
are expensive, to better groups.

Using low-fidelity models, i.e., coarse but fast estimators,
is an effective way to cluster the feasible solutions when the

Figure 11. The the median of the current optimal objective function value. A
total of 5000 replications are executed.

Figure 12. The histogram of the total simulation budget required to reach the
global optimum. 5000 replications are executed.
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high-fidelity budget is expensive, e.g., Xu et al. (2016). In
practice, it may happen that multiple low-fidelity models are
available for the studied problem and suggest different clus-
tering strategies (as in Section 5.2). In this case, we can use
all the low-fidelity models for the clustering, i.e., cluster the
solutions in a transformed multidimensional space in which
each dimension is the output of one low-fidelity model. The
useless low-fidelity models will be finally ignored by the pro-
posed method as the number of observations increases.

In practice, too many groups may result in wasting
budget in the first-stage exploration whereas not enough
groups may be not able to separate the good solutions from
bad ones. Therefore, when the simulation budget size is low,
a more effective way is to use few groups at the beginning.
Then, good groups, i.e., groups have higher budget sizes,
can be further partitioned during the sampling process.

6. Conclusion

This article proposes a method to allocate budget to existing
clusters of the solution space. The goal of the budget allocation
is to minimize the quantile of the objective function values
among all the sampled solutions. The proposed method can be
easily applied, since closed-form formulas are provided. It can
be used to generate good solutions in the initial design for
optimization problems, in which the efficiency is critical, i.e., a
good solution but not the optimum is needed in a short time.
It can also be applied to other problems in which budget is
allocated to competitive choices in order to minimize the
quantile of all sampled values.

The proposed method is tested in designed cases and
applications. The numerical results show that the proposed
method works well even if the given assumptions are not
satisfied. It also shows that using the method as the popula-
tion initializer can improve the performance of the applied
search algorithms in the studied cases, when proper cluster-
ing rules are used. In addition, an example of how to cluster
solutions using low-fidelity information (e.g., outputs from
analytical methods) is provided.

Future works have several directions. One is extending the
proposed method to stochastic problems. Currently, it is
applied considering the objective function is deterministic, i.e.,
no randomness is involved in the estimation of the objective
function. The second direction is to develop a dynamic clus-
tering strategy while sampling with the proposed method so
that the promising groups can be further exploited.
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Appendices

Appendix A: Proofs

Proof of Proposition 1. Given the group budget size nk and a
threshold s, for any solution xk, i sampled from group k, the probability
that its objective function value is smaller than or equal to s is FkðsÞ
under Assumption 1. Therefore,

EðIfxjyðxÞ�sgðxk, iÞÞ ¼ FkðsÞ,
and the expected number of the solutions in the final sample set
Sðn1, :::, nK , nÞ whose objective function values are smaller than or
equal to s is

E
XK
k¼1

Xnk
i¼1

IfxjyðxÞ�sgðxk, iÞ
 !

¼
XK
k¼1

Xnk
i¼1

FkðsÞ ¼
XK
k¼1

nkFkðsÞ:

Thus, the problem in expression (2) becomes the problem in
expression (3). Proposition 1 is proved. w

Lemma 1. If a random variable X follows the F-distribution Fðv1, v2Þ,
the random variable v1X follows the Chi-square distribution v2ðv1Þ as v2
approaches to infinity and

lim
v2!1

Fðx; v1, v2Þ ¼ Fv2ðv1x; v1Þ,

where Fð�; v1, v2Þ is the cdf of the F-distribution with degrees of freedom
v1, v2 and Fv2 ð�; v1Þ is the cdf of the Chi-square distribution with degree
of freedom v1.

Lemma 2. If a random variable X follows the F-distribution Fðv1, v2Þ,

lim
v1, v2!1

VarðXÞ ¼ lim
v1, v2!1

2v22ðv1 þ v2 � 2Þ
v1ðv2 � 2Þ2ðv2 � 4Þ ¼ 0,

lim
v1, v2!1

EðXÞ ¼ lim
v1, v2!1

v2
v2 � 2

¼ 1,

which means that limv1, v2!1 Fðx; v1, v2Þ ¼ 0, 8x < 1:

Proof of Theorem 2. Since ŝ ¼ l̂ b̂ þ zar̂ b̂ � l̂k þ zar̂k,8k, a < 0:5
(i.e., za < 0) and r̂k > 0, 8k, then,

r̂ b̂

l̂ b̂ � ŝ
¼ � 1

za
and

r̂k

l̂k � ŝ
� � 1

za
, 8k,

i.e., the inequality 0 < ĉk � ĉ b̂ ¼ � 1
za

always holds as the number of
sampling stages s approaches to infinity.

At least one group, denoted as c, has infinite budget size when the
number of sampling stages approaches to infinity, i.e., lims!1 ns�1, c !
1: If the series fns, b̂g is bounded, then 9ncj2 � nc <1, s.t.
lims!1 ns�1, b̂ � nc and using equation (10) we have:
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1 <
1þ 1=ĉ2c

1þ 1=ĉ2
b̂
� 1=nc

� lim
s!1Cb̂ , c ¼ lim

s!1
1þ 1=ĉ2c � 1=ns�1, c
1þ 1=ĉ2

b̂
� 1=ns�1, b̂

� 1þ 1=ĉ2c
1=2þ 1=ĉ2

b̂

<1:

Denote lims!1 Cb̂ , c as C1
b̂ , c

and lims!1 ns�1, b̂ as n1
b̂
: According to

Lemma 1, we have:

0 < lim
s!1 FðCb̂ , c; ns�1, b̂ � 1, ns�1, c � 1Þ ¼ Fv2 ðn1b̂ � 1ÞC1

b̂ , c
; n1

b̂
� 1

� �
< 1:

Then, using equation (8) we have:

lim
s!1

1=ns, b̂
1=ns, c

¼ lim
s!1

FðCc, b̂ ; ns�1, c � 1, ns�1, b̂ � 1Þ
FðCb̂ , c; ns�1, b̂ � 1, ns�1, c � 1Þ

¼ lim
s!1

1� FðCb̂ , c; ns�1, b̂ � 1, ns�1, c � 1Þ
FðCb̂ , c; ns�1, b̂ � 1, ns�1, c � 1Þ

¼ 1

Fv2 ðn1b̂ � 1ÞC1
b̂ , c

; n1
b̂
� 1

� �� 1 > 0:

The two series f1=ns, b̂g and f1=ns, cg are infinitesimals of the same
order, which contradicts the assumption that fns, b̂g is bounded.
Therefore, lims!1 ns, b̂ !1: Similarly, we can prove that
lims!1 ns, k !1,8k 6¼ b̂, since lims!1 ns, b̂ !1:

The group sample means and group sample variances approach to
the real group means and real group variances as the total budget sizes
allocated to all the groups approach to infinity. Thus, ĉk converges to
ck, 8k and the current best group b̂ converges to the real best group b
as the number of sampling stages approaches to infinity.

Since lims!1 ns�1, k !1,8k and li þ zari 6¼ lj þ zarj, 8i 6¼ j :

lim
s!1Ck, b̂ ¼ lim

s!1
1þ 1=ĉ2

b̂
� 1=ns�1, b̂

1þ 1=ĉ2k � 1=ns�1, k
¼ 1þ 1=c2b

1þ 1=c2k
< 1, 8k 6¼ b̂:

According to Lemma 2 we have:

lim
s!1 FðCk, b̂ ; ns�1, k � 1, ns�1, b̂ � 1Þ ¼ 0, 8k 6¼ b̂:

Therefore, according to equation (9):

lim
s!1 ns, b̂=Ns ¼ lim

s!1 1=
X
k

FðCk, b̂ ; ns�1, k � 1, ns�1, b̂ � 1Þ
FðCb̂ , k; ns�1, b̂ � 1, ns�1, k � 1Þ

 !

¼ lim
s!1 1= 1þ

X
k6¼b̂

FðCk, b̂ ; ns�1, k � 1, ns�1, b̂ � 1Þ
1� FðCk, b̂ ; ns�1, k � 1, ns�1, b̂ � 1Þ

0
@

1
A

¼ 1:

In summary, when the number of sampling stages approaches to
infinity, Algorithm 1 converges to allocating all the budget to the cur-
rent best b̂ while the current best group converges to the real best
group b, i.e., lims!1 ns, b=Ns ¼ 1: Theorem 2 is proved. w

Lemma 3. As both the degrees of freedom v1, v2 approach to infinity, the
cdf of the F-distribution has the following properties: limv1 , v2!1jv1<v2

Fð1, v1, v2Þ > 0:5; limv1,v2!1jv1¼v2Fð1,v1,v2Þ¼0:5; limv1 ,v2!1jv1>v2 Fð1,
v1, v2Þ<0:5:

Proof of Lemma 3. When the argument is equal to one, the cdf of
the F-distribution with degrees of freedom v1, v2 can be transformed to
the cdf of the beta distribution as follows:

Fð1, v1, v2Þ ¼ FB
v1

v1 þ v2
,
v1
2
,
v2
2

� �
,

where FB �, v12 , v2
2

� 	
is the cdf of the beta distribution with shape parameters

v1
2 ,

v2
2 : An approximate closed-form of the median of the beta distribution

with both shape parameters larger than one is provided by Kerman (2011):

FB
v1
2 � 1

3
v1
2 þ v2

2 � 2
3

,
v1
2
,
v2
2

 !
� 0:5,

and the error rapidly decreases to zero as the shape parameters
increase. If 1 < v1 < v2:

v1
v1 þ v2

�
v1
2 � 1

3
v1
2 þ v2

2 � 2
3

¼ 2ðv2 � v1Þ
ðv1 þ v2Þð3v1 þ 3v2 � 4Þ > 0:

Then,

lim
v1, v2!1jv1<v2

Fð1, v1, v2Þ > lim
v1, v2!1

FB
v1
2 � 1

3
v1
2 þ v2

2 � 2
3

,
v1
2
,
v2
2

 !
¼ 0:5:

Similarly,

lim
v1, v2!1jv1¼v2 Fð1, v1, v2Þ ¼ 0:5 and lim

v1, v2!1jv1>v2
Fð1, v1, v2Þ < 0:5:

Lemma 3 is proved. w

Proof of Theorem 3. It is proved in the proof of Theorem 2 that,
lims!1 ns�1, k !1,8k, which means ĉk=ĉ b̂ ,8k 6¼ b̂ approach to one
since lk ¼ lb,rk ¼ rb,8k: Therefore, using equation (10) we have:

lim
s!1Cb̂ , k ¼ lim

s!1
1þ 1=ĉ2k � 1=ns�1, k
1þ 1=ĉ2

b̂
� 1=ns�1, b̂

¼ 1,

and according to equation (8):

lim
s!1

ns, k
ns, b̂
¼ lim

s!1
FðCk, b̂ ; ns�1, k � 1, ns�1, b̂ � 1Þ
FðCb̂ , k; ns�1, b̂ � 1, ns�1, k � 1Þ

¼ lim
s!1

1
FðCb̂ , k; ns�1, b̂ � 1, ns�1, k � 1Þ � 1

¼ lim
ns�1, k, ns�1, b̂!1

1
Fð1; ns�1, b̂ � 1, ns�1, k � 1Þ � 1, 8k 6¼ b̂:

Combined with Lemma 3, if

lim
s!1

ns�1, k
ns�1, b̂

< 1, lim
s!1

ns, k
ns, b̂

> 1;

if

lim
s!1

ns�1, k
ns�1, b̂

> 1, lim
s!1

ns, k
ns, b̂

< 1;

if

lim
s!1

ns�1, k
ns�1, b̂

¼ 1, lim
s!1

ns, k
ns, b̂
¼ 1:

In addition,

lim
s!1

ns�1, k
ns�1, b̂

¼ lim
s!1

ns�1, k
ns�1, b̂ þ D

� lim
s!1

ns, k
ns, b̂
� lim

s!1
ns�1, k þ D
ns�1, b̂

¼ lim
s!1

ns�1, k
ns�1, b̂

:

Therefore,

lim
s!1

ns, k
ns, b̂
¼ 1, 8k 6¼ b̂:

Theorem 3 is proved. w

Appendix B: Numerical analysis on approximation (3)

Numerical experiments are executed to support the goodness of the prob-
lem approximation in expression (3). Given a problem of expression (1)
and its approximation in expression (3) (i.e., fix N, a,K, values and Fk, 8k
distributions), for any solution ni (i.e., an nk,8k combination), its ranking
according to the objective function value in expression (1) is denoted as
rð1Þi and its ranking according to the objective function value in expression
(3) is denoted as rð3Þi : The main idea is to show that the sequences frð1Þi g
and frð3Þi g are highly correlated. If the correlation coefficient is equal to
one, the solution rankings in expression (1) and in expression (3) are the
same, which includes that the optimal solution in expression (3) is the
optimal solution in expression (1). If the correlation coefficient is close to
one, it means that the optimal solution in expression (3) may not be the
optimal solution in expression (1), but it still has a good performance in
expression (1), i.e., it is a near-optimal solution.
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An example, in which 500 solutions are randomly sampled, is pre-
sented in Figure 13 with the objective function values and the solution
rankings of the sampled solutions. In this problem, N ¼ 50,K ¼ 5, a ¼
0:1427 and the group distributions are U(40.59,218.21), N(-
73.71,796.77), Tria(19.93,136.46,155.35) and two piecewise linear distri-
butions with two pieces, respectively. The expectation of the qa, i.e.,
the objective function value of the original problem, is estimated using
the Monte Carlo method with 50 000 replications. It is possible to see,
in Figure 13, that the objective function values of the original problem
(i.e., EðqaðSðn1, :::, nK , nÞÞÞ) and the approximated problem (i.e.,
s :
PK

k¼1 nkFkðsÞ ¼ aN) are highly correlated, especially for good solu-
tions, i.e., the points with smaller EðqaÞ values.

Figure 14 presents the average of the correlation coefficient between
rð1Þi and rð3Þi : Every point is obtained with 500 problems. In each prob-
lem, a,K, Fk,8k are randomly selected and 500 different solutions are
sampled. The K value is chosen from 2 to 10 and the a value varies
from 0.0001 to 0.45. The Fk is randomly selected from Normal distri-
bution Nðl 2 ½�100, 100�,r2 2 ½0, 2500�Þ, Uniform distribution
Uða, b;�250 � a < b � 250Þ, Triangular distribution
Triaða, b, c;�250 � a < b < c � 250Þ, and piecewise linear distribution
composed by two to five pieces within [–250, 250].

As shown in Figure 14, a significant correlation is observed even
though the N value is small (the average correlation coefficient is larger
than 0.97 even if N¼ 10). Furthermore, the average correlation

coefficient converges to one rapidly as the total budget size N increases,
which means that the solution rankings in the original problem and in
the approximated problem tend to be the same as the total budget
size increases.

In addition, 400 randomly selected problems are tested with N
varying from 10 to 30, K varying from three to five, the other settings
the same as above and the optimal solution identified through enumer-
ation. In 92.75% of the tested problems, the optimal solution is the
solution in Theorem 1. In the rest of the 29 problems, the minimal
group quantile and the second minimal group quantile are quite close
and the optimal solution is that some budget are allocated to the group
with the second minimal quantile. In these 29 problems, the mean
absolute relative difference between the objective function value of the
optimal solution and that of the solution in Theorem 1 is only 2.9%
(including the sampling noise). Therefore, expression (3) is a reason-
able approximation of expression (1).

Appendix C: Clustering rule for BAP

This Appendix describes in detail how the feasible solutions are clus-
tered in Section 5.1 and the algorithm used to sample solutions.

First, two clusters are generated. The buffer capacity of the solu-
tions in the first cluster is correlated to the average availability of the
corresponding adjacent machines, whereas the solutions in the second
cluster do not have any specific pattern. Then, each cluster is further
divided into more groups based on the range to which the total buffer
capacity belongs. Table 5 shows the categories of total buffer capacity
ranges when different numbers of groups are required.

During the sampling phase, the value of the total buffer capacity is
firstly sampled, then the combination of each buffer slot is randomly
generated. The sampling probability of the total buffer capacity is pro-
portional to the corresponding total number of combinations of the
buffer slots, i.e., high values have high probabilities to be sampled.

Algorithm 2 describes how the solutions, in which the buffer capacity
is correlated to the machine availability, are generated in Section 5.1. For
each new solution, the m value, which controls the ratio of the highest
buffer capacity to the lowest buffer capacity, is randomly selected from
[1,16]. The total buffer capacity is sampled considering the number of
combinations of buffer slots. The capacity of each buffer is determined in
proportion to the weight calculated based on the machine availability.
Finally, noise is added to increase the randomness of the sampling.

Algorithm 2 Buffer capacity sampling algorithm
n  Number of solutions to be sampled
d  Number of buffers in each solutions
for i ¼ 1 � � � n do

Sample the total buffer capacity Btot
i :

Randomly select mi 2 ½1, 16�:
for j ¼ 1 � � � d do

Calculate the reciprocal of the mean availability of the adjacent
machines: ci, j ¼ 2

ejþejþ1 :
Calculate the initial weight of each buffer: w0

i, j ¼
ci, j� miminjfci, jg�maxjfci, jg

mi�1 :
Add noise to the weight: wi, j ¼ ð1þ ui, jÞw0

i, j where ui, j is ran-
domly selected from [-0.1,0.1].
Determine the capacity of buffer j: xi, j ¼ bBtot

i � wi, j=
P

j wi, jc
and the rest buffer capacity is allocated arbitrarily.

end for
end for

Figure 13. The scatter plots of the objective function values and the solution
rankings in a problem. N ¼ 50, K ¼ 5, a ¼ 0:1427:

Figure 14. The average correlation coefficient of frð1Þi g and frð3Þi g and its 95%
confidence intervals.

Table 5. The categories of total buffer capacity ranges.

Number of groups Categories

2 [36,400]
10 [36,108], [109,181], [182,254],

[255,327], [328,400]
16 [36,81], [82,126], [127,172], [173,218],

[219,263], [264,309], [310,354], [355,400]
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