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a b s t r a c t

With the increasing complexity of industrial equipment, it is urgent to provide timely diagnosis and accu-
rate evaluation to avoid failure. For rolling bearings, it is important to achieve the multi-stage (incipient,
intermediate, late) fault diagnosis under random noise. Different from traditional methods, an Output
Hidden Feedback Elman Adaptive Boosting-Bootstrap Aggregating algorithm is proposed under a com-
prehensive diagnosis framework. First, the original signal is decomposed, denoised and reconstructed
by Ensemble Empirical Mode Decomposition. Then, OHF Elman neural network is designed by increasing
a feedback from the output layer to the hidden layer based on Elman neural network. This improves the
memory function for dynamic data of rolling bearings. Furthermore, for achieving diagnostic accuracy
and algorithm stability, OHF Elman AdaBoost-Bagging algorithm is developed as a strong learner through
the dual integration of AdaBoost algorithm and Bagging algorithm. Experimental results show that the
proposed algorithm not only has a good diagnostic performance on different stages of rolling bearing
faults, but also achieves higher generalization ability and stability. This multi-stage fault diagnosis frame-
work provides a novel tool and an effective solution for rolling bearing fault diagnosis.

� 2020 Published by Elsevier B.V.
1. Introduction

In modern industry, an effective diagnosis framework is impor-
tant to ensure equipment operation and avoid machine failure.
However, due to the increasing structural complexity, an industrial
equipment normally undergoes a long and multi-stage degrada-
tion, which brings new challenges for the fault diagnosis. In this
situation, the different failure information of various multi-stage
(incipient, intermediate, late) processes should be comprehen-
sively utilized to provide timely diagnosis and accurate evaluation
[1]. As an important kind of components, rolling bearings and their
health evaluations are essential to ensure the equipment opera-
tion. Performance degradation or failure of rolling bearings will
lead to unplanned equipment shutdown, resulting in economic
loss and even heavy casualties [2]. Hence, it is pivotal and urgent
to develop a multi-stage diagnosis framework to provide early
warning and precise diagnosis for rolling bearing fault.

For developing such a multi-stage diagnosis framework, it
should be noticed that rolling bearing failures are often reflected
in the vibration signals. However, in the incipient stage of rolling
bearing failures, such as early fatigue peeling, it is very difficult
to conduct the prognostic and health management (PHM) because
of the vague fault information and inconspicuous abnormal vibra-
tion signals [3]. If the early failure cannot be detected timely, it
may result in a disastrous accident at a certain time point [4].
Therefore, effective condition monitoring and fault diagnosis tech-
niques for rolling bearings in the incipient, intermediate and late
stages is practicable and required, which is of great significance
for improving manufacturing stability and equipment health man-
agement [5–8]. Thus, performing fault diagnosis for rolling bear-
ings becomes more interesting because it is likely to benefit from
utilizing diverse health information of incipient, intermediate, late
stages to provide timely diagnosis and accurate evaluation.

In the diagnosis framework, the first issue is to handle the fault
information monitored from the rolling bearing, which is the base
for the following multi-stage fault diagnosis. It can be noted that
the vibration signal of a rolling bearing is usually contaminated
by noise and other vibration sources and consequently, the fault
information may be thus masked. For handling this situation, com-
monly used denoising methods include Hilbert-Huang transform
(HHT) [9], Wavelet transform (WT) [10], Empirical Mode Decom-
position (EMD) [11] and Ensemble Empirical Mode Decomposition
(EEMD) [12], etc. Among them, EEMD has a good denoising effect
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Nomenclature

PHM Prognostic and health management
HHT Hilbert-Huang transform
WT Wavelet transform
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
SVM Support Vector Machine
ANN Artificial Neural Network
RNN Recurrent Neural Network
CNN Convolutional Neural Network
OHF Output Hidden Feedback
Bagging Bootstrap Aggregating
IMF Intrinsic Mode Function
EDM Electro-discharge machining
MSE Mean Square Error
u Input of neural network
r Dimension ofu
x Output of the hidden layer
xc Output of the context layer
n Dimension of xc andx
y Output of the output layer
yc Output of the context layer 2
m Dimension of y and yc
wI1 Weight matrix of xc
wI2 Weight matrix of u
wI3 Weight matrix of x
wI4 Weight matrix of yc
f tð Þ Activation function of the hidden layer
g vð Þ activation function of the output layer
yd desired output of neural network
E kð Þ Error function in k-th iteration
g1 learning step of wI1

g2 learning step of wI2

g3 learning step of wI3

g4 learning step of wI4

f
0

Derivative function of f tð Þ
g

0
Derivative function of g vð Þ

a self-feedback factor in the context layer
c self-feedback factor in the context layer 2

T The original sample set
Xi Input of T
Yi Output of T
N Dimension of T
H xð Þ Weak learner
K Number of weak learners in Bagging
l number of weak learners in AdaBoost
G xð Þ Strong learner
Ej the maximum error of j-th weak learnerbEjt Relative error on t-th sample of j-th weak learner
Ojt Output of j-th weak learner on t-th sample
ej Error rate of j-th weak learner
aj Weight coefficient of j-th weak learner
wj tð Þ Weight of t-th sample in j-th round
errort absolute error of t-th sample
s Threshold
b007 Fault with diameters of 0.007 in. in ball
b014 Fault with diameters of 0.014 in. in ball
b021 Fault with diameters of 0.021 in. in ball
IR007 Fault with diameters of 0.007 in. in inner race
IR014 Fault with diameters of 0.014 in. in inner race
IR021 Fault with diameters of 0.021 in. in inner race
OR007 Fault with diameters of 0.007 in. in outer race
OR014 Fault with diameters of 0.014 in. in outer race
OR021 Fault with diameters of 0.021 in. in outer race
x tð Þ The raw vibration signal
Cj tð Þ the j-th IMF component
N

0
The amount of white noise

rn The n-th residual component
Nstd Ratio of the standard deviation of the added white noise

to the standard deviation of x tð Þ
s tð Þ White noisebx tð Þ Signal after adding s tð Þ
s dimension of each sample
MSE Average error of the test data
STD Standard deviation of MSE on the test data
a An integer constant from 1 to 10
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on vibration signals of rolling bearings, and thus can effectively
extract incipient fault information. By adding Gaussian white noise
into the original signal, the signals at different scales will have con-
tinuity. It helps to promote anti-aliasing decomposition, and effec-
tively avoid mode aliasing and endpoint effect in EMD
decomposition [12].

The key issue in the framework is the multi-stage fault diagno-
sis algorithm. Statistical models are the core of rolling bearing fault
diagnosis, which can be divided into model-based approaches and
data-driven approaches. Model-based approaches, as traditional
approaches, are not applicable for large systems because of their
complex physical models. Data-driven approaches have gained
increasing attentions with the development of sensor technologies
and data analysis methods [13]. At present, there are few studies
on the diagnosis of rolling bearings in multiple fault stages, and
some researches have applied vibration signal analysis and intelli-
gent diagnosis methods in incipient fault diagnosis of rolling bear-
ings. Commonly used methods for incipient fault diagnosis include
probability statistics [14–17], Support Vector Machine (SVM) [18]
and Artificial Neural Network (ANN). The representative work
[19] solved the problem of early fault detection through deep neu-
ral network (DNN) and long short-term memory (LSTM) network,
and proved the effectiveness and the reliability of the model on
the bearing data sets. Li et al. [20] successfully recognized the early
238
fault types of rolling bearings through the binary tree support vec-
tor machine (BT-SVM). Naïve Bayes classifier was designed to iden-
tify the most prominent fault for multiple incipient faults in
transmission lines [21].

Due to their self-adaptive ability, massive parallel computations
ability and universal estimations in both supervised and unsuper-
vised ways, ANNs are widely used for PHM in industry [22]. Nowa-
days, ANNs have been developed vigorously, thus giving rise to
many optimized neural networks, such as Elman Neural Network
[23], Recurrent Neural Network (RNN) [24] and Convolutional
Neural Network (CNN) [25]. Shi et al. [26] proposed OHF Elman
(Output Hidden Feedback Elman) neural network based on Elman
neural network by increasing a feedback between the output layer
and the hidden layer. Most existing approaches employ individual
learners designed for solving binary-class problems [27]. For the
multiple fault diagnosis of rolling bearings, such a classification
system is inefficient, and will exhibit low efficiency and large error
for handling multi-classification problems [28,29]. Therefore, it is
required to develop an effective technique for the multi-stage fault
diagnosis of rolling bearings, which should consider each classi-
fier’s accuracy, diversity and independence.

Recently, numerous studies have been conducted to enhance
the performance of the learners. Among them, Bootstrap Aggregat-
ing (Bagging) and Boosting [30] in ensemble learning are utilized
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to design better learning approaches [31,32]. Lin et al. [33] inte-
grated Bagging ensemble learning to optimize the SVM prediction
model. Li et al. [34] evaluated the levels of the internal leakage of
the hydraulic cylinders by using AdaBoost-BP neural network clas-
sifier. Bagging algorithm integrates different learners that adapt to
different samples by changing the training set, thereby improving
the diagnostic accuracy of the full sample. AdaBoost algorithm
integrates different learners and corresponding weights by chang-
ing the sample weights, thereby forming a strong learner. Since the
influence of each sample on diagnostic error is considered, Ada-
Boost algorithm has a better effect than Bagging algorithm on
improving the diagnostic accuracy. However, AdaBoost is particu-
larly sensitive to anomalous samples. Bagging algorithm can effec-
tively reduce the impact of anomalous samples on AdaBoost
algorithm by changing the training set. Due to the similarity of dif-
ferent fault characteristics of rolling bearings, a single learner can-
not achieve effective classification of different fault samples.
Hence, in order to ensure the applicability of the learner to the full
sample data, this paper proposes a novel ensemble learning con-
cept which integrates both Bagging and AdaBoost. A strong learner
based on OHF Elman neural network (a weak learner) and
AdaBoost-Bagging integrated ensemble learning is designed. Major
fault components (rolling element, inner race and outer race) and
their different fault stages (incipient, intermediate and late stages)
are comprehensively analyzed to prove the effectiveness of this
proposed method.

The remainder of this paper is organized as follows: Section 2
illustrates the multi-stage fault diagnosis of rolling bearings. Sec-
tion 3 presents detailed mathematical formulations of the pro-
posed technical framework and OHF Elman AdaBoost-Bagging
Algorithm. Then, an experiment setup on a benchmark dataset is
shown in Section 4. Section 5 provides the results comparison
and effect analysis. Finally, Section 6 gives some concluding
remarks and future work plans.
2. Problem description

In order to effectively grasp the fault status of rolling bearings,
the multi-stage fault diagnosis is proposed and performed through
vibration signal analysis. Rolling bearing fault diagnosis needs not
only to accurately identify the fault location, but also to diagnose
the fault stage. This study comprehensively analyzes three major
fault components: rolling element (i.e. ball), inner race, outer race
and three fault stages: incipient, intermediate, late stages. Hence,
the multi-stage fault diagnosis of rolling bearings can be trans-
formed into a multi-classification problem. The classification dia-
gram is shown in Fig. 1.

The incipient fault diagnosis of rolling bearings has gained more
and more attention, due to the weakness of the vibration signal
Fig. 1. Classification diagram of rolling bearing faults.
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with high background noise. Recently, some works have also made
some progress in the incipient fault diagnosis of rolling bearings,
for example, stochastic resonance method [1], EMD [4] and
machine learning [20] have been well applied. However, two major
problems remain to be settled:

1) In many cases, the impact signals related to bearing failure
usually show different waveform characteristics. Even for
the same bearing, the shock signals at different fault stages
will also show very different waveforms. A more flexible
and adaptive algorithm is of great significance for the
multi-fault diagnosis of rolling bearings.

2) The performance of a diagnostic model is affected by the
fault characteristics extracted from data and its own param-
eters. The same diagnostic algorithm model cannot guaran-
tee the applicability of the data set under different faults and
different working conditions.

In order to retain the fault information of rolling bearings to the
greatest extent, this study uses EEMD to perform the signal denois-
ing. Taking the EEMD decomposition waveform of a normal signal
consists of 2000 sample points as an example, the result is shown
in Fig. 2.

From top to bottom, the 10 waveforms are respectively 9 Intrin-
sic Mode Function (IMF) components and a residual component R
decomposed from 2000 sample points. It can be seen from Fig. 2
that the modal aliasing is substantially eliminated between the
IMF components, and the residual component R is monotonically
decreasing.
3. Methodology

In order to build a more flexible, adaptive and higher applicable
algorithm, OHF Elman neural network is selected as an effective
method for fault diagnosis, while a strong learner is developed
by integrating AdaBoost and Bagging algorithms to perform more
accurate fault diagnosis on rolling bearings. In addition, EEMD
was utilized for modal decomposition and signal reconstruction.
On this basis, this constructed technical framework is shown in
Fig. 3.

The framework illustrated in Fig. 3 is mainly composed of fault
signal extraction and fault mode identification. In terms of fault
signal extraction, the kurtosis and correlation coefficient will be
the judgment criteria for the selection of IMFs obtained through
EEMD. Regarding fault mode identification, a strong learner is
developed by integrating AdaBoost algorithm with Bagging algo-
rithm based on OHF Elman neural network. Multiple training sub-
sets are obtained by bootstrap method. Based on each training
subset, OHF Elman neural network is performed and OHF Elman
AdaBoost learner is obtained. Finally, the OHF Elman AdaBoost
learners from all training subsets are combined to be the OHF
Elman AdaBoost-Bagging learner.

The description of this technical framework is presented here.
The first part is the introduction of EEMD for Signal processing
and feature extraction, after that, the network architecture of
OHF Elman neural network will be illustrated. Then, the Bagging
and AdaBoost algorithm will be performed in detail. Finally, the
specific iterative process of OHF Elman AdaBoost-Bagging Algo-
rithm is provided.
3.1. EEMd

The principle of EEMD decomposition is [35]: When the addi-
tional white noise is evenly distributed throughout the time-
frequency space, the time-frequency space is composed of different



Fig. 2. Decomposition waveform of normal signal.

Fig. 3. Technical framework of fault diagnosis for rolling bearing.
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scale components divided by the filter bank. EEMD has an addi-
tional step of adding noise on the basis of EMD. The white noise
is evenly distributed on the time-frequency space of the signal.
When the number of additions is sufficient, the noise effect of
the signal can be eliminated, and the average of the entire IMF
component can be obtained. This is the effective and accurate
IMF component.

The EEMD decomposition process is as follows:
Step 1: Adding the white noise s tð Þ to the original signal x tð Þ:

bx tð Þ ¼ x tð Þ þ s tð Þ ð1Þ
Step 2: EMD decomposition of bx tð Þ:

C1 tð Þ ¼ bx tð Þ � r1 tð Þ ð2Þ

C2 tð Þ ¼ r1 tð Þ � r2 tð Þ ð3Þ
240
..

.

Cn tð Þ ¼ rn�1 tð Þ � rn tð Þ ð4Þ
where the n-th residual component rn tð Þ satisfies the characteristics
of the monotone function, stopping the EMD decomposition, that is,
rn tð Þ is the final residual component.

Step 3: Repeating Step 1 and Step 2 N
0
times.

Step 4: Averaging the N
0
groups of IMFs components from N

0

times EMD decompositions.

Cj tð Þ ¼ 1
N

0

XN0

i¼1

Cij tð Þ ð5Þ

x tð Þ ¼
Xn
j¼1

Cj tð Þ þ rn ð6Þ



Fig. 4. Architecture of OHF Elman network.
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x tð Þ represents the raw vibration signal; Cj tð Þ represents the j-th

IMF component; N
0
is the amount of white noise, usually 50 or

100; n is the number of IMF components; rn is the residual compo-
nent; Nstd is the ratio of the standard deviation of the added white
noise to the standard deviation of the raw vibration signal.

3.2. Weak Learner: Neural network

OHF Elman achieves the ability to process dynamic data by add-
ing feedback from the output layer to the hidden layer based on
Elman neural network. In order to illustrate the effectiveness of
the feedback structure, this study will first conduct a comparison
experiment between the Elman neural network and the OHF Elman
neural network. And their specific mathematical models are
described here.

3.2.1. Elman neural network
Assume that there are r nodes in the input layer, n nodes in the

hidden and context layers, respectively, and m nodes in the output
layer. Then the input u is an r-dimensional vector, the output x of
the hidden layer and the output xc of the context nodes are n-
dimensional vectors, respectively, while the output y of the output
layer is an m-dimensional vector. The weights wI1, wI2, and wI3 are
n� n, n� r and m� n-dimensional matrices, respectively. These
weights of the context nodes, input nodes and hidden nodes are
denoted as wI1, wI2, and wI3.

The modified Elman network adds a self-feedback factor a in
the context nodes, based on the traditional Elman neural network
[26]. Its mathematical model is:

x kð Þ ¼ f wI1xc kð Þ þwI2u k� 1ð Þ� � ð7Þ

xc kð Þ ¼ axc k� 1ð Þ þ x k� 1ð Þ ð8Þ

y kð Þ ¼ g wI3x kð Þ� � ð9Þ
Here, f tð Þ is often taken as the sigmoid function:

f tð Þ ¼ 1
1þ e�t

ð10Þ

while g vð Þ represents the activation function of the output layer
and is often taken as a linear function. If g vð Þ is taken as a linear
function, then g

0
i ¼ 1. And a is in a range of (0, 1).

Let the kth desired output of the system be yd kð Þ. The error
function will be:

E kð Þ ¼ 1
2

yd kð Þ � y kð Þð ÞT yd kð Þ � y kð Þð Þ ð11Þ

Differentiating E kð Þ with respect to wI3, wI2, and wI1, respec-
tively, according to the gradient descent method, we get the fol-
lowing equations:

DwI3
ij ¼ g3d

0
i xj kð Þ; i ¼ 1;2; � � � ;m; j ¼ 1;2; � � � ;n ð12Þ

DwI2
jq ¼ g2d

h
j uq k� 1ð Þ; j ¼ 1;2; � � � ; n; q ¼ 1;2; � � � ; r ð13Þ

DwI1
jl ¼ g1

Xm
i¼1

d0i w
I3
ij

� � @xj kð Þ
@wI1

jl

; j ¼ 1;2; � � � ;n; l ¼ 1;2; � � � ;n ð14Þ

where g3, g2,g1 are learning steps of wI3, wI2, and wI1, respectively,
and

d0i ¼ yd;i kð Þ � yi kð Þ� �
g

0
i ð15Þ

dhj ¼
Xm
i¼1

d0i w
I3
ij

� �
f
0
j ð16Þ
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@xj kð Þ
@wI1

jl

¼ xl k� 1ð Þf 0
j þ a

@xj k� 1ð Þ
@wI1

jl

ð17Þ
3.2.2. OHF Elman neural network
OHF Elman neural network increases a feedback yc kð Þ from the

output layery kð Þ to the hidden layer xc kð Þ, which is illustrated in
Fig. 4.

The mathematical model of OHF Elman neural network is repre-
sented as:

x kð Þ ¼ f wI1xc kð Þ þwI2u k� 1ð Þ� � ð18Þ

xc kð Þ ¼ axc k� 1ð Þ þ x k� 1ð Þ ð19Þ

yc kð Þ ¼ cyc k� 1ð Þ þ y k� 1ð Þ ð20Þ

y kð Þ ¼ g wI3x kð Þ þwI4yc kð Þ� � ð21Þ
wherec (0 < c < 1) is the gain factor of the self-feedback. The con-
nection weights of the context layer 2 nodes can be denoted as wI4.
Andyc is the output of the context layer 2. The modifications on the
weightswI1;wI2andwI3are identical to those in the modified Elman
network, while the update rule on wI4 can be:

DwI4
ij ¼ g4d

0
i yC;j kð Þ; i ¼ 1;2; � � � ;m; j ¼ 1;2; � � � ; n ð22Þ

where g4 is the learning step of wI4and d0i is given by Eq. (15), while
the context layers 2 nodes are equal to the output nodes.

3.3. Bagging algorithm

One integrated approach in our study is the Bagging algorithm,
which is a typical representative of parallel ensemble learning
method and is directly based on bootstrap method [36]. This boot-
strap method can not only reduce the training complexity, but also
guarantee the diversity of multiple weak learners. Bagging firstly
uses training datasets to obtain multiple training subsets by boot-
strap method, then uses multiple weak learners to learn each sub-
sample set. Finally, the average of the multiple weak learners is the
strong learner based on Bagging algorithm [37]. The core idea is to
obtain diversity by building several weak learning models with
multiple training subsets. We integrate this method since it is
especially suitable for those unstable weak learners that are sensi-
tive to few variations in the training set.

The flow chart is illustrated in Table 1 and the specific iterative
process of the Bagging algorithm is as follows: (1) Carrying out K



Table 1
Flow chart of Bagging algorithm.

Input: The original sample set: T: Xi;Yið Þf gNi¼1

Weak learner:H xð Þ
The number of weak learners: K

Process
01: For i ¼ 1;2; � � � ;K
02: Extracting n training samples from sample set: T randomly as i-th

training subset
03: Using i-th training subset for H xð Þ, Hi xð Þ will be obtained
04: End for
05: Combining weak learners using average method:

G xð Þ ¼ PK
i¼1Hi xð Þ=K

Output: Strong learner: G xð Þ

Table 2
Flow chart of AdaBoost R2 algorithm.

Input: The original sample set: T: Xi;Yið Þf gNi¼1

Weak learner: H xð Þ
The number of weak learners: l

Process
01: Normalize weights: w1 tð Þ ¼ 1=N; t ¼ 1; � � � ;N
02: Forj ¼ 1;2; � � � ; l
03 Using the training set for H xð Þ, Hj xð Þ will be obtained
04: Calculating the maximum error: Ej ¼ max

t
Ojt � Yjt

�� ��; t ¼ 1; � � � ;N
Ojt: Output ofHj xð Þ
Calculating the relative error of each sample:

Linear: Êjt ¼ Ojt�Yjtj j
Ej

; t ¼ 1; . . . ;N

Squared Law: Êjt ¼ Ojt�Yjtð Þ2
E2j

; t ¼ 1; . . . ;N

Exponential: Êjt ¼ 1� e
� Ojt�Yjtj j

Ej ; t ¼ 1; . . . ;N
05

Calculating the error rate: ej ¼
PN
t¼1

wj tð Þ � Êjt

06 Calculating the weight coefficient: aj ¼ ej
1�ej

07 Updating the weights:

wjþ1 tð Þ ¼ wj tð Þ � a1�Êjt
j ; t ¼ 1; . . . ;N

wjþ1 tð Þ ¼ wjþ1 tð ÞPN

t¼1
wjþ1 tð Þ

08: End for
09: Combining weak learners: G xð Þ ¼ Gl� xð Þ

Gl� xð Þ: The weak learner corresponding to the sequence number l�

corresponding to the median value of ln 1
aj
j ¼ 1;2; � � � ; l

Output: Strong learner: G xð Þ

Table 3
Flow chart of a novel AdaBoost regression algorithm.

Input: The original sample set: T: Xi;Yið Þf gNi¼1

Weak learner: H xð Þ
The number of base learners:l

Process
01: Normalize weights:w1 tð Þ ¼ 1=N; t ¼ 1; � � � ;N
02: Forj ¼ 1;2; � � � ; l
03 Using the training set for H xð Þ, Hj xð Þ will be obtained
04: Calculating the absolute error:errort ¼

P10
h¼1 Oth � Ythj j; t ¼ 1; � � � ;N

05 Calculating the error rate:ej ¼
P

wj tð Þ; errort > s
06 Calculating the weight coefficient:aj ¼ 1

2 ln
1�ej
ej

07 Updating the weights:

wjþ1 tð Þ ¼ wj tð Þ � 1:1; errort > s
wj tð Þ; errort 6

�
; t ¼ 1; . . . ;N

wjþ1 tð Þ ¼ wjþ1 tð ÞPN

t¼1
wjþ1 tð Þ

08 Normalizing the weight coefficient of weak learner:aj ¼ ajPK

j¼1
aj

09: End for
10: Combining weak learners:G xð Þ ¼ Pl

j¼1aj � Hj xð Þ
Output: Strong learner:G xð Þ
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rounds of the bootstrap method for the original sample set. In each
round, extracting N0 training samples. Finally, K groups of inde-
pendent training subsets are obtained. (2) Learning the K groups
of training subsets by using given weak learner respectively, then
Kindependent weak learners will be developed. (3) Calculating
the average of the output of the Kweak learners as the final result,
i.e., the output of the strong learner.

3.4. AdaBoost algorithm

Another integrated approach here is AdaBoost, which is a
machine learning integration algorithm to improve data training
performance [38]. Generally, AdaBoost chooses a weak learner as
the basic learner, such as classification trees, support vector machi-
nes and neural networks [39]. It emphasizes the sample with the
incorrect learning effect or the large learning error by appropri-
ately adjusting the weight in the training data distribution before
the next weak learner training. Therefore, we utilize the AdaBoost
algorithm, since the predictive diagnosis of test data can be
improved by integrating each step of the weak learner.

Many methods have been used for modifying AdaBoost to solve
regression problems. Currently, AdaBoost R2 [40,41] and AdaBoost
RT [42] are most commonly used and effective. The AdaBoost algo-
rithm is more flexible when building a strong learner and the
results are less prone to overfitting. The flow chart of AdaBoost
R2 algorithm is shown in Table 2.

Considering the diversity of bearing failures in reality, the cate-
gory of bearing fault is expressed as 0; � � � ;0;1;0 � � � ;0½ �T (the posi-
tion i corresponding to 1 represents the i-th fault mode), which can
reflect the probability that the sample is divided into each type.
The maximum error of AdaBoost R2 algorithm is no longer applica-
ble, and a novel AdaBoost regression algorithm is designed.

The characteristics of the proposed AdaBoost algorithm:

1) Using a novel threshold to effectively split the sample into
samples with larger errors and samples with smaller errors.
When the threshold is determined reasonably, the model
iteration will be accelerated by considering the samples with
larger errors exclusively. The threshold here can be obtained
from the diagnosis result of OHF Elman neural network.

2) Considering that the Bagging algorithm reduces the effect of
singular samples on the iterative change of sample weights
in the AdaBoost algorithm, the algorithm can use different
constant coefficients to update the sample weights, thereby
speeding up the iteration of sample weights Table 3.

3.5. The proposed OHF Elman AdaBoost-Bagging algorithm

As mentioned above, due to the non-stationarity and non-
linearity of vibration signals, and doped with different degrees of
noise, the neural network is improved to perform the multi-stage
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fault diagnosis of rolling bearing, because the neural network is
with good self-applicability and fault tolerance [43]. In order to
further improve the diagnosis effect on the full sample data,
ensemble learning is applied to the neural network. AdaBoost
and Bagging ensemble algorithms have lower generalization error,
and reduce the likelihood of overfitting. In general, the AdaBoost
algorithm has higher accuracy than the Bagging algorithm [44].
However, we notice that the AdaBoost algorithm is sensitive to
anomalous samples, because the anomalous samples may get lar-
ger weights in the iteration process, affecting the prediction accu-
racy of the final strong learner. Thus, we introduce Bagging
ensemble to adjust the training set for AdaBoost ensemble. By
adjusting the training set of the AdaBoost algorithm to subsets of
the original training set, the effect of anomalous samples on the
AdaBoost algorithm is reduced. Table 4 illustrates the specific iter-



Table 4
Flow chart of OHF Elman AdaBoost-Bagging Algorithm.

Input: The original sample set: T : Xi;Yið Þf gNi¼1

Weak learner: H xð Þ-OHF Elman neural network
The number of base learners for Bagging Ensemble: KThe number
of base learners for AdaBoost Ensemble:l

Process
01: For i ¼ 1;2; � � � ;K
02: Extracting n training samples from sample set: Trandomly as i-th

training subsetTi

03: Normalizing weights:w1 tð Þ ¼ 1=N; t ¼ 1; � � � ;N
04: For j ¼ 1;2; � � � ; l
05 Using Ti for H xð Þ, Hij xð Þ will be obtained
06:

Calculating the absolute error: errort ¼
P10
h¼1

Oth � Ythj j ; t ¼ 1; . . . ;N

07: Calculating the error rate: ej ¼
P

wj tð Þ; errort > s
08: Calculating the weight coefficient: aj ¼ 1

2 ln
1�ej
ej

09: Updating the weights:

wjþ1 tð Þ ¼ wj tð Þ � 1:1; errort > s
wj tð Þ; errort 6

�
; t ¼ 1; . . . ;Nwjþ1 tð Þ ¼ wjþ1 tð ÞPN

t¼1
wjþ1 tð Þ

10: Normalizing the weight coefficient of weak learner:aj ¼ ajPl

j¼1
aj

11 End for
12: Strong learner based on AdaBoost:Gi xð Þ ¼ Pl

j¼1aj � Hj xð Þ
13: End for
14: Combining learners:G xð Þ ¼ PK

i¼1Gi xð Þ=K
Output: Strong learner:G xð Þ
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ation process of the proposed OHF Elman AdaBoost-Bagging
algorithm.

The contributions of this OHF Elman AdaBoost-Bagging Algo-
rithm can be concluded as:

1) High-performance weak learner: OHF Elman neural network
is utilized by increasing a feedback from the output layer
to the hidden layer. Hence, it has higher dynamic processing
performance for bearing vibration signals. Besides, the supe-
riority of OHF Elman neural network over SVM has been pro-
ven by the comparative data experiment.

2) Multi-stage Fault Diagnosis of Rolling Bearing: The fault data
selected includes not only the data of the ball, the inner race
and the outer race, but also their corresponding incipient,
intermediate and late fault stages’ health information. OHF
Elman AdaBoost-Bagging Algorithm can achieve the diagno-
sis of the fault locations and stages of rolling bearings, thus
more effective health management for rolling bearings can
be performed.

3) Higher generalization ability: AdaBoost algorithm fully con-
siders the diagnostic error of each sample data. And the
weight coefficient of each weak learner will be determined
by the training error. Through this path, the proposed
method can effectively reduce the generalization error by
integrating the trained weak learners.

4) Higher stability model: AdaBoost algorithm is extremely sen-
sitive to abnormal data because it will later affect the gener-
ated weak learners. To handle this, Bagging algorithm is
utilized to reduce the impact of abnormal data by bootstrap
method. Meanwhile, Bagging algorithm can obtain accurate
diagnosis models for different fault types by changing the
training data. Therefore, the proposed OHF Elman
AdaBoost-Bagging Algorithm has better stability when han-
dling the data with high diversity.

4. Experimental study

The performances of this proposed OHF Elman AdaBoost-
Bagging Algorithm is empirically evaluated on bearing vibration
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dataset from Case Western Reserve University Bearing Center.
Firstly, descriptions of the dataset are presented. Then details of
the experimental procedure are provided. At last, the proposed
algorithms and evaluation criteria are designed.

4.1. Datasets description

The bearing vibration dataset from Case Western Reserve
University Bearing Center has been widely used for rolling bearing
fault diagnosis research [45]. This bearing dataset was obtained
through experiments with 0.007, 0.014 and 0.021 in. diameter
faults using SKF bearings. The motor speed is 1797RPM, and the
sampling frequency is 12 kHz for the inter race, ball and outer race
fault data (including normal mode). There are 10 fault modes in
this study, selecting 120,000 sample points for each fault and
240,000 sample points for normal mode. The motor bearings were
seeded with single-point faults using electro-discharge machining
(EDM). 0.007, 0.014 and 0.021 in. are the fault diameters. Once a
single-point fault occurs in the rolling bearing of the actual equip-
ment, the fault diameter will increase with the development of the
failure time. Therefore, this study chooses the faults with fault
diameter of 0.007 in. as the incipient stage, 0.014 in. as the inter-
mediate stage, and 0.021 in. as the late stage. In the following,
b007, b014, and b021 represent rolling element (i.e. ball) faults
with diameters of 0.007, 0.14, and 0.21 in.; IR007, IR014, and
IR021 represent inner race faults; OR007, OR014, OR021 represent
outer race faults.

4.2. Data processing

In the industry, bearing fault vibration signals usually appear as
periodic transient pulses. In order to effectively display the charac-
teristics in the time–frequency domain, the sampling signal nor-
mally covers at least two or three cycles. Considering the
sampling frequency and characteristic frequency, we select 2000
sample points to represent the characteristics of the fault vibration
signal. Every 2000 sample points are collected as a set of input data
according to the time sequence. That is, there are 60 sets of sample
data for each failure mode (covering 9 types of incipient, interme-
diate and late failures of the ball, inner race and outer race).
Besides, there are 120 sets of sample data for the normal mode.

In this study, EEMD is used to achieve a good denoising effect on
the vibration signals of rolling bearing. The IMF components are
selected by using the kurtosis and correlation coefficient, thus
the fault information is retained to the greatest extent. Then the
fault characteristics of rolling bearing can be effectively extracted.

4.2.1. Signal reconstruction
The noise is completely independent of the original signal and

the kurtosis value is more sensitive to the impact component of
the signal [46]. Thus, the correlation coefficient and kurtosis value
can be used as the indices of the IMF component selection [47]. In
this paper, 0.1 is selected as the screening threshold of the correla-
tion coefficient. IMF components with correlation coefficients
higher than 0.1 are retained, while those lower than 0.1 are
removed. IMF components reserved in different fault modes are
not the same. IMF1–IMF5 are reserved for normal mode, while
IMF1 and IMF2 are reserved for OR007 failure mode. By calculating
the kurtosis values of the remaining IMF components, it is found
that the kurtosis values of the IMF components retained from the
inner race and outer race faults signal are high, and there is a large
difference in various fault diameters. Then, selecting the first two
IMF components with higher kurtosis values for signal reconstruc-
tion: normal mode selects IMF3 and IMF5; b007 and b021 fault
mode select IMF1 and IMF3; b014 fault mode selects IMF1 and
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IMF4; IR007, IR014, IR021, OR007 and OR021 fault mode select
IMF1 and IMF2; OR014 fault mode selects IMF3 and IMF4.

4.2.2. Fault feature extraction
Selecting proper fault characteristics is the prerequisite for

accurate fault diagnosis [18]. Through the analysis of EEMD recon-
struction signal, the signal characteristic parameters can be calcu-
lated to determine whether the bearing has failed, and the type of
fault. Selecting three dimensional parameters (mean, standard
deviation, and root mean square value) and three dimensionless
parameters (skewness, kurtosis, and margin), as shown in Table 5.

4.2.3. Input dataset and output dataset
In sum, the input of the sample data is composed of 6 kinds of

time domain parameters extracted from the fault features. For each
type of fault, 60 sets of sample data are selected, while 120 sets of
sample data are selected for normal mode. The output of the sam-

ple data is represented by 0; � � � ;0;1; 0 � � � ;0½ �T (the position i corre-
sponding to 1 represents the i-th fault mode), where normal, b007,
b014, b021, IR007, IR014, IR021, OR007, OR014, OR021 represent
the 1st to 10th fault modes, respectively. At the same time, the
training data and test data are randomly split from the sample data
according to a ratio of 5:1.

4.3. Performance metrics

Mean Square Error (MSE) is widely used as the index of perfor-
mance evaluation for machine learning [48]. MSE is the expecta-
tion of the square of the difference between the estimated value
of the parameter and the true value, which reflects the accuracy
of diagnostic results:

MSE ¼
Xs

i¼1
yd;i � yi
� �2

=s ð23Þ

where yd;i is the real output, yi is the output of model, and s is the
dimension of each sample.

To characterize the stability of the model for rolling bearing
fault diagnosis, the standard deviation is conducted for MSE of
the test data. The smaller the standard deviation, the more bal-
anced the diagnosis ability of the model for different faults [49].

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

MSEj �MSE
� �2

vuut ð24Þ

where MSEj is the error of the test data, while MSE is the average
error of the test data and N is the number of the test data.

Although this study transforms the classification problem into a
regression problem to adapt to the multi-fault characteristics of
rolling bearings, MSE still cannot directly express the performance
of a classification model. Therefore, the accuracy will remain as one
of the performance metrics. According to the determined desired
output: 0; � � � ;0;1;0 � � � ;0½ �T , each sample will result in an absolute
error matrix, and the upper limit of each element in the absolute
error matrix is defined as 0.5, that is, all 10 elements are less than
0.5 as correct diagnosis result. Both the signal processing and data
analysis were conducted by MATLAB� (The MathWorks, Inc., Nat-
ick, MA, USA) (version: 9.5 (R2018b)).
Table 5
Three dimensional and three dimensionless parameters.

Dimensional parameters Dimensionless parameters

Mean Standard deviation Root mean square

x ¼ 1
N

PN
i¼1xi r ¼ 1

N

PN
i¼1 xi � xð Þ2 xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1x

2
i

q
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5. Results and discussions

For achieving the fault diagnosis of rolling bearings in multiple
fault stages and locations, this paper combines the idea of ensem-
ble learning with OHF Elman neural network. To improve the gen-
eralization ability and stability of the method simultaneously,
AdaBoost and Bagging algorithms are integrated to OHF Elman
neural network.
5.1. Results analysis of different weak learners

As mentioned above, SVM and Neural Network are the most
commonly used algorithms for fault diagnosis. In order to provide
a more effective approach for rolling bearing fault diagnosis, we
choose a better algorithm as the weak learner for ensemble learn-
ing. In this research, SVM and Neural Network are performed based
on the same training data and test data.

On the one hand, since a small number of support vectors deter-
mine the final decision function of the SVM, the calculation
depends on the support vector, rather than the entire sample
space, and dimensional disaster can be avoided. This research is
a regression problem for the fault diagnosis of rolling bearings.
Therefore, the epsilon-SVR (support vector regression) model
based on an insensitive loss function is used [50]. The purpose is
to find a separating hypersurface, so that the expected error is min-
imized. The determination of the kernel function is crucial for the
construction of epsilon-SVR model. In this study, RBF (Radial Basis
Function) is selected because RBF can map samples to a higher-
dimensional space. The determination of the gamma parameter
of RBF and the penalty factor of epsilon-SVR still have a huge
impact on the diagnosis results. Here, Cross-validation methods
are usually used to improve the prediction accuracy. In this study,
the penalty factor of epsilon-SVR is determined as 4 and the
gamma parameter of RBF is determined as 0.25.

On the other hand, Elman neural network and OHF Elman neu-
ral network are both performed. In comparison with SVM, the
superiority of OHF Elman compared with Elman neural network
is also judged according to the data experiment. Tansig, logsig
and trainlm are selected as the excitation function, input transfer
function and network training function of neural network respec-
tively. The number of neurons in the hidden layer can be between
4 and 14 by calculating:

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r þm

p þ a ð25Þ

wheren is the number of neurons in the hidden layer, r is the num-
ber of neurons in the input layer, m is the number of neurons in the
output layer, and a is an integer constant from 1 to 10.

Here, Elman neural network is performed under different num-
bers of neurons in the hidden layer. The number of neurons with
the smallest generalization error (MSE) is selected for the hidden
layer of the both two neural networks. As shown in Fig. 5, the num-
ber of neurons in the hidden layer is determined to be 10.

Furthermore, for selecting weak learner from SVM, we utilize
Elman neural network and OHF Elman neural network as the basic
model of ensemble learning. This study focuses on establishing the
corresponding three models, and using the test dataset to analyze
Skewness Kurtosis Margin

S ¼
1
N

PN

i¼1
xi�xð Þ3

1
N

PN

i¼1
xi�xð Þ2

� �3=2 K ¼
1
N

PN

i¼1
xi�xð Þ4

1
N

PN

i¼1
xi�xð Þ2

� �2 L ¼
max

i
xi�min

i
xi

1
N

PN

i¼1

ffiffiffiffiffi
xij j

p� �2



Table 6
Diagnostic results of SVM, Elman and OHF Elman neural network.

Performance Metrics SVM Elman OHF Elman

Accuracy 50% 64.5% 67.27%
Averaged MSE 0.0804 0.0609 0.0503
Standard Deviation 0.0978 0.0868 0.0768
Response Time/s 0.006 0.008 0.01

Fig. 5. Diagnostic error with different numbers of neurons in the hidden layer.

Fig. 6. Diagnostic errors of SVM and two neural networks on each sample.
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the generalization abilities and stabilities. The MSE of each sample
of the test dataset is shown in Fig. 6.

As can be seen from Fig. 6, Elman neural network and OHF
Elman neural network have shown better diagnostic results on
the test sample data, especially reducing the extremum of diagnos-
tic error MSE. Compared with Elman neural network, OHF Elman
neural network has no strong superiority. However, it has reduced
diagnostic errors of many test samples. In order to better measure
the pros and cons of these three models, the accuracy, the response
time and the average and standard deviation of MSE of the test
dataset are calculated, as shown in Table 6 and the Fig. 7.

First of all, the three algorithms have almost no difference in
response time. When focusing on the entire test dataset, the accu-
racy, averaged MSE and standard deviation become the most effec-
tive analysis indicators. It can be noticed that Elman neural
network and OHF Elman neural network have huge advantages
on the entire sample, thus proving their better generalization abil-
ity and higher stability. Meanwhile, OHF Elman neural network has
achieved the best results. Therefore, in terms of diagnostic results,
OHF Elman neural network is the best choice for weak learner of
ensemble learning.
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The key issue to establish an effective ensemble learning algo-
rithm is to determine parameters of the model. In the previous sec-
tion, the relevant parameters of the OHF Elman neural network
have been obtained. Here, before performing specific results anal-
ysis, the relevant parameters of AdaBoost ensemble and Bagging
ensemble need to be optimized.

5.2. Parameters determination of AdaBoost

The parameters of AdaBoost ensemble are the threshold s and
the number of base learners l. The parameter determination pro-
cess and the results are as follows:

� Determination of the threshold: s

The determination of the threshold s directly determines the
weight change of each sample, and thus affects the diagnostic error
level of the strong learner. If this threshold is designed too small,
the complexity and time of AdaBoost iterations will increase
greatly. If it is too large, AdaBoost will lose its effect. To set a rea-
sonable threshold s, OHF Elman neural network was first selected
for training and testing based on the sample data. The results are:
the averaged absolute error is 0.0511, the maximum absolute error
is 2, and the minimum absolute error is 8.4272e-19, thus s is deter-
mined to be 0.01.

� Determination of the number of base learners: l

The superimposed effect of the weak learners determines the
learning ability of the final strong learners. However, with the
increase of the number of weak learners, it is uncertain whether
the diagnosis effect will continue to be improved or even causing
overfitting. Considering the iteration time and effectiveness of
ensemble learning, the number range of weak learners is set as
[8,15]. The corresponding experimental results are shown in Fig. 8.

To select the number of weak learners, the sum of the MSE
errors of all test samples is used as the criterion, as shown in the
vertical axis in Fig. 8. It is illustrated that the number of weak
learners has a non-linear effect on the strong learners, and the
sum of the diagnostic errors takes the minimum when the number
of weak learners is set as 13. Thus, the final number of weak learn-
ers is l ¼ 13.

5.3. Parameters determination of Bagging

The main content of Bagging ensemble is to construct different
training datasets through the sampling method. Each dataset is
repeatedly sampled from the original dataset. Therefore, each data
set lacks some samples from the original data set with high prob-
ability and contains several repeated samples. Different training
datasets lead to the differences between the training-based mod-
els, i.e., OHF Elman neural network.

In Bagging ensemble, two parameters need to be optimized: the
number of samples in the training datasets to be constructed, and
the number of weak learners. To ensure the consistency with the
training set information in other methods, the number of the sam-
ples in the training subset n0 is selected as 550. As for the number



Fig. 7. Diagnostic results of SVM and two neural networks over the entire test dataset.

Fig. 8. Diagnostic errors of AdaBoost ensemble with different numbers of weak
learners.

Fig. 9. Diagnostic errors of Bagging ensemble with different numbers of weak
learners.
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of weak learners, the diagnostic error results of the ensemble mod-
els under different numbers of weak learners are shown in Fig. 9.

Here, 100 OHF Elman neural networks are first trained as the
base models. Then, K base models are randomly selected and aver-
aged. This process is repeated 30 times, and the averaged result of
30 times is used as the diagnostic error of strong learner under K
weak learners. In this process, K is traversed from 1 to 100.

It can be found that the averaged MSE decreases significantly in
the early stage of the increase in the number of weak learners. The
diagnostic error of the strong learner under 100 weak learners is
0.0081. In this study, the upper limit of the averaged MSE is set
to 0.0085 by considering the iteration time and accuracy. It can
be found from Fig. 9 that 20 is more suitable as the number of weak
learners for Bagging Ensemble.
5.4. Results analysis of different ensemble algorithms

To verify the effectiveness and superiority of the proposed OHF
Elman AdaBoost-Bagging Algorithm for rolling bearing fault diag-
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nosis, the same test dataset as OHF Elman neural network, Bagging
ensemble and AdaBoost ensemble is selected. And the generaliza-
tion error and standard deviation are used as the evaluation indi-
cators. Then, the diagnostic effect of each ensemble model from
the perspective of each test sample to the entire test dataset will
be analyzed. The specific results of OHF Elman AdaBoost-Bagging
Algorithm and other two ensemble algorithms are shown in
Fig. 10.

Fig. 10(a) shows the diagnostic error MSE on each test sample of
OHF Elman neural network, AdaBoost ensemble, Bagging ensem-
ble, and our OHF Elman AdaBoost-Bagging Algorithm. The
improvement effects of AdaBoost ensemble algorithm and Bagging
ensemble algorithm on weak learners (OHF Elman neural net-
works) are illustrated in Fig. 10(b)–(d) describes the diagnostic
results of AdaBoost ensemble algorithm, Bagging ensemble and
AdaBoost-Bagging ensemble algorithm.

From Fig. 10(b) and (c), it can be seen that both Bagging ensem-
ble and AdaBoost ensemble have a very good optimization on the
OHF Elman neural network. Bagging ensemble effectively reduces



Fig. 10. Diagnostic errors of different algorithms on each test sample.

T. Xia, P. Zhuo, L. Xiao et al. Neurocomputing 433 (2021) 237–251
the extremum of diagnostic errors, which also illustrates the func-
tion of Bagging ensemble in improving the stability of the algo-
rithm. In Fig. 10(d), AdaBoost-Bagging ensemble makes full use
of the advantages of AdaBoost ensemble and Bagging ensemble.
It not only effectively balances the diagnostic effect of each test
sample, but also reduces the diagnostic error of the entire test
dataset.

The diagnosis results of the above algorithms are different on
various samples. To better measure the superiority of the algo-
rithm, we use the accuracy, response time and averaged MSE and
standard deviation as the performance metrics. Performance met-
ric values of OHF Elman neural network and three ensemble algo-
rithms are illustrated in Table 7 and Fig. 11.

When Neural Network is performed for rolling bearing fault
diagnosis, the impact of anomalous samples on the network model
cannot be resolved. Here, we consider that AdaBoost ensemble has
more advantages in improving the accuracy of fault diagnosis, and
Bagging ensemble can improve the stability of diagnosis model.
Thus, Fig. 11 shows that AdaBoost-Bagging ensemble effectively
reduces both the averaged MSE and the standard deviation through
the dual integration of AdaBoost and Bagging. Although the ensem-
ble model further increases the response time, the response time of
1.6 s can already meet the actual industrial needs.
Table 7
Diagnostic results of different algorithms on the entire test dataset.

Performance Metrics OHF Elman Bagging ensemble

Accuracy 67.27% 94.55%
Averaged MSE 0.0503 0.0081
Standard Deviation 0.0768 0.0266
Response Time/s 0.0100 0.2030
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5.5. Results analysis of multiple faults

When the rolling bearing is in the incipient stage of failure, its
vibration signal is abnormal and inconspicuous, resulting in fuzzy
fault information. Hence, due to the lack of control over the degree
of faults, the abnormal state of rolling bearing is often discovered
in the late fault stage, and the delay in fault diagnosis will cause
serious failure risk.

In order to effectively control the degree of faults, we classify
the rolling bearing faults into incipient, intermediate and late
stages according to the fault diameter of single-point. Therefore,
in addition to the fault diagnosis of different parts (the inner race,
the outer race and the ball), we also study the diagnosis for differ-
ent fault stages. Tables 8 and 9 describe the specific diagnosis
errors of different algorithms for different fault stages and loca-
tions. The fault diagnosis results are shown in Fig. 12.

As can be seen from Fig. 12, the diagnostic accuracy of OHF
Elman neural network for the normal state is high, which is pre-
cisely because the normal signal is relatively stable. For the fault
signal prone to be anomalous sample, OHF Elman neural network
has a higher diagnostic error. Meanwhile, all algorithms have their
highest diagnostic error for the middle stage of faults. Although
OHF Elman-AdaBoost has lower diagnostic errors for the normal
AdaBoost ensemble AdaBoost-Bagging ensemble

93.64% 95.45%
0.0078 0.0056
0.0315 0.0170
0.1090 1.6570



Table 8
Diagnostic errors (averaged MSE) of algorithms in different fault stages.

OHF Elman OHF Elman-Bagging OHF Elman-AdaBoost OHF Elman-AdaBoost-Bagging

Normal 1.5688e�12 0.0048 0.0022 0.0031
Incipient 0.0637 1.1425e�04 1.2740e�05 9.8902e�05
Intermediate 0.0983 0.0197 0.0203 0.0138
Late 0.0165 0.0011 0.0014 0.0073

Table 9
Diagnostic errors (averaged MSE) of algorithms in different fault locations.

OHF Elman OHF Elman-Bagging OHF Elman-AdaBoost OHF Elman-AdaBoost-Bagging

Normal 1.5688e�12 0.0048 0.0022 0.0031
Ball 0.0532 0.0040 0.0036 0.0138
Inner race 0.0118 5.3720e�04 2.3275e�04 2.4511e�04
Outer race 0.1068 0.0181 0.0194 0.0035

Fig. 12. Diagnostic errors of different algorithms in different fault stages and locations.

Fig. 11. Results of OHF Elman neural network and three ensemble algorithms.
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state, the incipient stage and the late stage of faults, OHF Elman-
AdaBoost and OHF Elman AdaBoost-Bagging algorithms have little
difference in the diagnosis effect due to their lower magnitude.
Instead, effective fault diagnosis of the intermediate stage can
arrange reasonable maintenance and replacement strategies.
Therefore, the proposed OHF Elman AdaBoost-Bagging algorithm,
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which has lower diagnostic errors for the intermediate stage of
faults, has more advantages.

Besides, all the algorithms have higher fault diagnosis errors for
the ball or the outer race. AdaBoost ensemble and Bagging ensem-
ble have greatly improved the fault diagnosis accuracy of all loca-
tions, but the fault diagnosis error of the outer race is the largest.



Table 10
Diagnostic errors (averaged MSE) for various locations in different stages.

Ball Inner race Outer race

Incipient 3.0033e�04 3.7405e�06 7.5469e�06
Intermediate 0.0264 7.6308e�04 0.0129
Late 0.0200 5.0945e�05 2.9532e�04

Fig. 13. Diagnostic errors of OHF Elman AdaBoost-Bagging algorithm.
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Although the OHF Elman AdaBoost-Bagging algorithm improves
the accuracy of fault diagnosis for the outer ring, the fault diagnosis
of rolling elements has a large error. In view of this problem, the
diagnostic errors of the OHF Elman AdaBoost-Bagging algorithm
are further analyzed for different fault stages of various locations,
as shown in Table 10 and Fig. 13.

Fig. 13 describes the fault diagnosis results of the OHF Elman
AdaBoost-Bagging algorithm for various locations in different
stages. It can be found that the diagnostic errors of the OHF Elman
AdaBoost-Bagging algorithm for the ball mainly come from the
intermediate and late stages. Besides, the OHF Elman AdaBoost-
Bagging algorithm has the good diagnostic accuracy for the late
stage of the outer race and the inner race.
6. Conclusion

In this paper, we propose an OHF Elman AdaBoost-Bagging
algorithm for multi-stage fault diagnosis of rolling bearing, which
aims to improve the diagnostic accuracy and stability through
the dual integration of AdaBoost ensemble and Bagging ensemble.
First of all, the signal decomposition and reconstruction are per-
formed by using EEMD, and six valid features are extracted. Then,
the multi-stage (incipient, intermediate, late) fault diagnosis under
random noise is achieved for different parts/locations (the inner
race, the outer race and the ball) and the OHF Elman AdaBoost-
Bagging algorithm is verified to be more suitable for multi-stage
fault diagnosis of rolling bearings, which has achieved 95.45% clas-
sification accuracy and a lower diagnostic error as 0.0056. The
effectiveness of the feedback mechanism of OHF Elman neural net-
work is illustrated by the comparison experiment of Elman neural
network, OHF Elman neural network and SVM. Through further
analysis of diagnostic errors (averaged MSE) for various locations
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in different stages, the diagnostic errors of the OHF Elman
AdaBoost-Bagging algorithm for the ball mainly come from the
intermediate and late stages.

Although this OHF Elman AdaBoost-Bagging algorithm has
achieved a promising performance, there is still ample space for
further improvements, mainly to further improve the diagnostic
accuracy of rolling bearing faults in the intermediate stage and
the ball part. The future work is to extract more effective features
through more detailed data processing. In addition, parameter
optimization of the OHF Elman AdaBoost-Bagging algorithm will
be carried out by other methods to further improve diagnostic
accuracy.
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