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A B S T R A C T

The surface quality of three-dimensional (3-D) curved surfaces is one of the most important factors that can
directly influence the performance of the final product. This paper presents a systematic approach for detection
and monitoring of defects on 3-D curved surfaces based on high-density point cloud data. Firstly, an algorithm to
remove outliers and a boundary recognition algorithm are proposed to divide the entire 3-D curved surface
including millions of measured points into multiple sub-regions. Secondly, two new evaluation indexes based on
wavelet packet entropy and normal vector are explored to represent the features of the multiple sub-regions to
determine whether the sub-regions are out-of-limit (OOL) of specifications. Thirdly, three quality parameters
representing quality characteristics of a curved surface are presented and their values are calculated based on the
clusters of OOL sub-regions. Finally, three individual control charts are presented to monitor the three quality
parameters. As long as any quality parameter is out of the control range, the manufacturing process of the curved
surface is determined to be out-of-control (OOC). The results of a case study show that the proposed approach
can effectively identify the OOC manufacturing process and detect defects on 3-D curved surfaces.

1. Introduction

The surface quality of three-dimensional (3-D) curved surfaces is
very important for product performance. For instance, the inner surface
of an engine cylinder head combustion chamber is a 3-D curved surface.
If the inner surface is defective, the volume of the combustion chamber
will be affected and in turn one of the significant performances of an
engine, namely, compression ratio, will be affected greatly. The tradi-
tional quality control method of the inner surface is applied based on
coordinate measurement machine (CMM). Although CMM is high in
accuracy, the number of measured points is small and the entire surface
contour cannot be fully reflected. With the development of high defi-
nition metrology (HDM) technologies, high-density point cloud data is
measured for reflection of the entire curved surface contour (see Fig. 1),
which provides great opportunities for quality control of 3-D curved
surfaces. About one million measurement points are collected from a
cylinder head by HDM system [1].

Many researches have been conducted on detection and monitoring
of defects on flat surfaces. Wang et al. [2] employed the fused least
absolute shrinkage and selection operator (LASSO) algorithm to iden-
tify potentially shifted sites on wafer surfaces and proposed a variable
selection-based statistical process control (SPC) method for monitoring

two-dimensional (2-D) data maps. He et al. [3] proposed a multivariate
generalized likelihood ratio (MGLR) control chart for monitoring and
detecting numerous number of fault clusters per image in industrial
applications. Sullivan [4] proposed a method based on profile mon-
itoring which is effective in detecting single or multiple shifts and/or
outliers and described the algorithm and an effective stopping rule that
controlled the false detection rate. Woodall et al. [5] reviewed the
monitoring methods of process and product profiles (representation of
quality characteristics) in statistical process control and exhibited
comparisons of the monitoring methods for linear calibration re-
lationships, change-point methods for simple linear regression profile
data, and the use of generalized linear models to represent profiles.
However, profile monitoring is based on the assumption that the can be
represented by linear, nonlinear or nonparametric model.

With the development of measurement technologies, several re-
searches about controlling flat surface variation based on HDM have
also been conducted. Du et al. [6–8] proposed a shearlet-based method
and support vector machine-based methods to separate and extract
different surface components using HDM. Du et al. [9] presented a co-
Kriging method based on multivariate spatial statistics to estimate
surface form error. Du et al. [10] also developed a fast and adaptive bi-
dimensional empirical mode decomposition (FABEMD) approach for

https://doi.org/10.1016/j.precisioneng.2018.03.001
Received 6 June 2017; Received in revised form 27 January 2018; Accepted 1 March 2018

⁎ Corresponding author at: State Key Lab of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China.
E-mail address: lovbin@sjtu.edu.cn (S. Du).

Precision Engineering 53 (2018) 79–95

Available online 10 March 2018
0141-6359/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01416359
https://www.elsevier.com/locate/precision
https://doi.org/10.1016/j.precisioneng.2018.03.001
https://doi.org/10.1016/j.precisioneng.2018.03.001
mailto:lovbin@sjtu.edu.cn
https://doi.org/10.1016/j.precisioneng.2018.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.precisioneng.2018.03.001&domain=pdf


filtering of workpiece surfaces using HDM. Wang et al. [11–13] de-
veloped a modified gray level co-occurrence matrix to extract features
from the images converted from face-milled surface measured by HDM.
Suriano et al. [14] proposed a new methodology for efficiently mea-
suring and monitoring flat surface variations by fusing in-plant multi-
resolution measurements and process information. Nguyen et al. [15]
presented a method to reduce flat surface variation in face milling
processes based on HDM. Wells et al. [16] proposed an adaptive gen-
eralized likelihood ratio (AGLR) technique to monitor the planar sur-
face defects by transforming high-density data into a grayscale image.

However, the above researches based on HDM only focus on the flat
surface. It is desired to develop a systematic approach for detection and
monitoring of defects on 3-D curved surface based on high-density point
cloud data. Since the number of the curved surface point cloud data is
large, it is unrealistic to directly monitor the entire surface quality by
monitoring the condition of each point. Wang et al. [17] used quanti-
le–quantile (Q–Q) plot to characterize a huge sample and transform it to
a linear profile, and proposed profile monitoring techniques to improve
the performance of a conventional control chart. Wells et al. [18] also
used Q–Q plots to transform high-density point cloud data into linear
profiles that can be monitored by well-established profile monitoring
techniques. But the methods using Q–Q plot cannot identify the loca-
tions of defective regions from the curved surface in out-of-control
(OOC) condition. Colosimo et al. [19] developed a method consisting of
modeling the manufactured surface via Gaussian processes models and
monitoring the deviations of the actual surface from the target pattern
estimated in Phase I. The proposed method is limited to monitoring
surfaces (for example a cylindrical surface) characterized by parametric
models.

In this paper, the curved surface is divided into hundreds of small
sub-regions, and each small sub-region contains dozens of 3-D points.
The defects of the small sub-region are characterized by two explored
evaluation indexes: the non-random distribution of abnormal points
(NDAP) of a sub-region and the plane direction deviation (PDD) of a
sub-region. The NDAP is calculated by the wavelet packet entropy and
the PDD is calculated by the normal vector. The wavelet packet coef-
ficients are used to extract the NDAP feature of a sub-region, which are
quantified by the information entropy. That is, the wavelet packet en-
tropy is used as the NDAP feature of each sub-region. In order to ac-
curately extract the PDD features of the divided sub-regions, the normal
vector of each sub-region is also calculated. Wavelet packet entropies
and normal vectors of the modulus curved surface are calculated as the
criteria to evaluate whether the sub-regions of the measured curved
surface are out-of-limit (OOL). When the OOL sub-regions are identi-
fied, three quality parameters that represent quality characteristics of
the measured curved surface are calculated based on the clusters of
OOL sub-regions. Three individual control charts are made to monitor
the three quality parameters.

The remainder of this paper is organized as follows. In Section 2, a
systematic approach is proposed to detect and monitor defects on 3-D
curved surface based on high-density point cloud data. In Section 3, a
case study is presented to validate the proposed approach. The result
analysis is implemented to illustrate the performance of the proposed

approach for detection and monitoring of defects on 3-D curved sur-
faces. Finally, conclusions are given in Section 4.

2. The proposed approach

2.1. Framework

This sub-section presents an overview of the proposed approach for
monitoring 3-D curved surface quality of a workpiece based on high-
density point cloud data. The framework of the proposed approach is
shown in Fig. 2. The procedure involves the following steps.

Step 1: Region division of curved surfaces. HDM is employed to
collect 3-D coordinates from workpiece surfaces. The curved surface
(represented by the measured point cloud data) is divided into multiple
sub-regions through remove of outlier, boundary recognition and sub-
region division. A sub-region is a small point cloud (usually consisting
of dozens or hundreds of 3-D points) that represents a part of the curved
surface. In order to evaluate the quality of each divided sub-region, the
modulus point cloud data (i.e., product design specification) of the
curved surface is processed by boundary recognition and sub-region
division.

Step 2: Feature evaluation of each sub-region. Two new evaluation
indexes (NDAP and PDD) based on wavelet packet entropies and
normal vectors are explored to represent the features of sub-regions of
the measured curved surface. Wavelet packet entropies and normal
vectors of sub-regions of the modulus curved surface also need to be
calculated as the criteria.

Step 3: Quality parameters calculation of the curved surface. When
the OOL sub-regions of the measured curved surface are recognized,
three quality parameters that represent quality characteristics of the
measured curved surface are calculated by clusters of the OOL sub-re-
gions.

Step 4: Monitoring the three quality parameters. Each quality
parameter is monitored by an individual control chart. If any quality
parameter of a curved surface is out of the control range, the manu-
facturing process is OOC and the correction should be conducted.

2.2. Region division of curved surfaces

2.2.1. Algorithm to remove outliers
Due to the interference of the measurement environment and the

surface reflection of the measured workpiece, etc., there are mainly
outliers in the measured point cloud data (the measured curved sur-
face). There are three types of outliers: the outliers generated by am-
bient light interference, the outliers caused by the reflective properties
of the curved surface of a workpiece, and the outliers that are not ob-
vious. An algorithm including three steps is proposed to remove the
corresponding type of outliers.

Step 1: Remove the outliers generated by ambient light interference.
Since the maximum distance from the surface to the bottom of a
workpiece is known, the maximum distance is set as the distance
threshold to determine whether a point is an outlier. If the Z coordinate
value of a point is greater than the distance threshold, the point is

Fig. 1. The high-density point cloud data of a curved surface of an engine cylinder head.

D. Huang et al. Precision Engineering 53 (2018) 79–95

80



regarded as an outlier. In order to keep the ordered structure of the
measured point cloud data, the recognized outliers are replaced by
coordinates of [x; y; na]. Here, x and y are the corresponding coordinate
values of the recognized outliers, while nameans the Z coordinate value
is removed.

Step 2: Remove the outliers caused by the reflective properties of
the surface of the workpiece. This type of outliers indicates features of
small number and isolation. Mark the missing points of the point cloud
data (shown in Fig. 3) and outliers recognized in Step 1 as null values,
and count the number of non-null points between adjacent points
marked as null values. If the number is smaller than a set threshold, the
non-null points are regarded as outliers and should be removed. In
addition, the points marked as null and points to be removed should be
replaced by coordinates of [x; y; na].

Step 3: Further remove the unobvious outliers using K-nearest

Fig. 2. Framework of the proposed approach.

Fig. 3. Missing points in the measured point cloud data.
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neighbor algorithm based on statistics. For a point (Pi) of the point
cloud, count the nearest K points (Pi1, Pi2 …, PiK) of point Pi and cal-
culate the distance (di1, di2…, diK) between point Pi and its K-nearest
neighbor points. The average distance of the K-nearest neighbor points

of the point Pi is calculated as ∑=
=

dMean d K/i j

K
ij1

. Since the struc-

ture of the measured point cloud data is ordered, the nearest neighbor
points of point Pi are P1, P2, P3, and P4 (shown in Fig. 4), and K is
determined as 4. Considering the fact that the nearest neighbor points
may contain outliers or missing points (shown in Fig. 4 (b)), the value of
K is usually determined as K≤ 4. The average distance of the point

cloud is calculated as ∑=
=

dMean Numdist /
i

Num
i1

, and the mean square

error is calculated as ∑= −
=

dist dMeanσ ( )Num i

Num
i

1
1

2 . Here, Num is

the number of all points of the curved surface point cloud data. Since
the average distance (dMean) of each point of the curved surface point
cloud data is in accordance with the 3σ law of the Gaussian distribution,
the outliers do not satisfy the 3σ law of the Gaussian distribution. Set

− +[dist 3σ, dist 3σ] as the standard interval and remove the points with
dMeani that does not conform to the standard interval. Coordinate of [x;
y; na] is also used to replace the removed points to keep the ordered
structure of the measured point cloud data.

2.2.2. Boundary recognition algorithm
The measured point cloud data of a workpiece contains usually

plane point cloud data and curved surface point cloud data. A curved
surface has boundary, which needs to be recognized from the measured
point cloud. According to the fact that Z coordinate values of the points
in the plane and the curved surface are quite different, the initial/
terminal row and initial/terminal column of the curved surface point
cloud data is obtained. The boundary recognition algorithm of identi-
fying the curved surface point cloud data from the measured point
cloud data is described as follows.

Step 1: Since the structure of the measured point cloud data is or-
dered, the rows and columns of the measured point cloud data are

marked (shown in Fig. 5).
Step 2: Calculate the mean of the Z-coordinate values of each row,

determine the serial numbers of the initial and terminal rows according
to the change of average Z-coordinate value, and store all the points
from the initial row to the terminal row. The stored points are regarded
as the selected point cloud data (shown in Fig. 6).

Step 3: Calculate the mean of Z-coordinate values of each column of
the selected point cloud data, and determine the serial numbers of the
initial and terminal columns according to the change of average Z co-
ordinate values. The location of curved surface point cloud data is
shown in Fig. 7.

Step 4: Identify the curved surface point cloud data. Although the
location of the curved surface point cloud data has been identified, the
identified point cloud data in rectangular region (shown in Fig. 7) also
contains the plane point cloud data. According to the difference of Z
coordinate values of the points in the plane and the curved surface, the
points in the plane that are within the initial/terminal row and initial/
terminal column are selected. In order to ensure that each row/column
contains the same number of points, these selected points should be
replaced by coordinates of [x; y; 0] instead of being deleted.

2.2.3. Sub-region division
The identified point cloud data in sub-section 2.2.2 is regarded as

the curved surface point cloud data since the coordinates of the plane
points included in the identified point cloud data are marked as [000].
In order to monitor the curved surface quality of a workpiece, the
curved surface is divided into M×N (M and N should be integers) sub-
regions. Each sub-region contains a small number of points (dozens of
points). Assume that the serial number of the initial and terminal rows
are m1 and m2, and the serial number of the initial and terminal col-
umns are n1 and n2. Then the curved surface point cloud data contains
(m2-m1+1) rows and (n2-n1+1) columns.

Step 1: Divide the curved surface into M sub-regions according to
the row. Assume that INT[(m2-m1+1)/M]=m3, and m4=(m2-m1+1)-
M×m3 (the reminder of (m2-m1+1) divided by M). Each of the former
m4 sub-regions contains (m3+1) rows, and the each of the latter (M-m4)

Fig. 4. The K-nearest neighbor points of a target point.

Fig. 5. The structure of the measured point cloud.

Fig. 6. Determination of initial/terminal row of the curved surface point cloud data.
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sub-regions contains m3 rows. An example is shown in Fig. 8.
Step 2: Divide each of the M sub-regions into N sub-regions ac-

cording to the column. The process of the division is the same as the
previous process shown in Step 1 of Sub-section 2.2.3. The division of
the curved surface is shown in Fig. 9.

2.3. Feature evaluation of each sub-region

The defects of the divided sub-regions are identified by two new
evaluation indexes of NDAP and PDD based on wavelet packet entropy
and normal vector. The NDAP is used to evaluate the random dis-
tribution of abnormal points in the sub-region. If the distribution of
abnormal points in the sub-region is not random, the NDAP of the sub-
region is relatively large and thus the sub-region is considered to be
bad. Although the sub-region is good based on the evaluation of the
NDAP, the spatial location of the sub-region may not be qualified,
which is evaluated by PDD. When both features of the sub-region are
qualified, the sub-region is good. The calculation of NDAP and PDD is

shown in Fig. 10. The NDAP feature is represented by wavelet packet
entropy and the PDD feature is represented by normal vector.

2.3.1. Wavelet packet entropy
Wavelet transform reflects the energy distribution of the data in the

time-frequency domain [20,21]. But wavelet transform only decom-
poses the low frequency components of the data (shown in Fig. 11(a)),
which ignores the information of high frequency components. The
wavelet packet transform decomposes not only the low frequency
components of the signal but also the high frequency components
(shown in Fig. 11(b)), which is better applied for feature extraction
[22].

Entropy is used to describe and measure the uncertainty of the
random variable, and can accurately characterize information.
Therefore, the combination of wavelet packet and entropy (wavelet
packet entropy) is considered to make full use of their advantages in
feature evaluation.

For a regular set of data (e.g. a set of single-frequency data), its
relative wavelet packet energy is very small since all the energy is only
concentrated on a band. The energy of a very complex data (e.g. a
random data) will be distributed in each band, and the relative wavelet
packet energy will be relatively similar, which makes wavelet packet
entropy maximum. Similarly, wavelet packet entropy is used as the
measurement of information of the surface morphology, and it re-
presents the randomness and complexity of the surface morphology. If
the quality of workpiece surface is good, the height distribution of each
point is regular and non-random, the energy distributions in the time-
frequency domain are relatively concentrated in the low frequency
band (e.g. AAA3 in Fig. 11(b)), and the entropy is small. If the points are
completely equal, the entropy is zero. On the contrary, if the quality of
the surface is bad, the surface heights (Z coordinate values of all points
of the surface) distribute randomly and wavelet packet is used for
multi-scale analysis of the surface, amplitude and energy of the de-
composed components on other scales will increase and the entropy
will be relatively large.

The calculation of wavelet packet entropy is conducted based on
wavelet packet transform of the surface. The coefficient matrix of the
wavelet pocket transform is processed into a probability distribution
sequence, and the entropy calculated from it reflects the randomness
and complexity of the surface morphology. The procedure of calcu-
lating wavelet entropy of each divided sub-region is described as fol-
lows.

Step 1: Datum transformation of sub-regions and interpolation. The
sub-regions are inclined planes, but current wavelet packet decom-
positions (1-D and 2-D wavelet packet transforms) cannot be directly
used for feature extraction of the inclined planes. Therefore, the datums
of the inclined sub-regions need to be transformed into the flat planes.
The transformation is shown in Fig. 12 and the specific details can refer
to [1]. Since there are sub-regions that only contain few points and the
spatial distribution of these points is not a rectangle, rectangular re-
gions should be re-selected from these sub-regions and several points
are deleted, which would result in information loss of the re-selected
sub-regions. In order to reduce the information loss, interpolation is
applied to add the number of points to be decomposed. The inter-
polation is triangle-based cubic interpolation and the details can refer
to [23].

Step 2: Select input data for wavelet packet decomposition. The
distribution of points of each divided sub-region is usually not a regular
rectangle, which cannot be directly decomposed by wavelet packet.

The regional point cloud data before and after interpolation is the
same in distribution (both are not regular rectangles), so it is necessary
to select the rectangular data from the regional point cloud data after
interpolation as the input of wavelet packet decomposition. In order to
preserve the characteristics of the regional point cloud data, the
number of data that the selected rectangle contains should be as large
as possible.

Fig. 7. Location of the curved surface point cloud data.

Fig. 8. M divided sub-regions of the curved surface point cloud data.

Fig. 9. The sub-region division of the curved surface.
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Step 2.1: Identify the largest rectangular region that contains valid
data. It can be seen from Fig. 13 that there are points marked as NaN
(null value), which should not be included in the input data. Remove
the rows/columns that only contains mark of NaN. The unit of data in
Fig. 13 is millimeter (mm).

Step 2.2: Count the number of non-null data of each row/column,
and delete the row/column that contains the least number of non-null
data of all rows and columns until the data contained in each row/
column is non-null (shown in Fig. 14). The unit of data in Fig. 14 is mm.
If the number of rows to be deleted is too large, the column that con-
tains the least number of non-null data should be deleted.

Step 3: Wavelet packet decomposition. The wavelet packet decom-
position is a multi-level division of the frequency band, which further
decomposes the high frequency components. It can adaptively select the
corresponding frequency band to match the signal spectrum according

to the characteristics of the analyzed data, and improve the time-fre-
quency resolution. In this study, 2-D Wavelet packet is used to de-
compose the divided sub-regions. A two-layer decomposition tree of 2-
D wavelet packet is shown in Fig. 15. The decomposition relationship is
expressed as S0,0= S2,0+ S2,1+ S2,2 + S2,3+ S2,4+ S2,5+ S2,6+
S2,7+ S2,8+ S2,9+ S2,10+ S2,11+ S2,12+ S2,13+ S2,14+ S2,15. The
coefficient matrices of all nodes of the last layer are the output of wa-
velet packet decomposition.

Step 4: Calculation of wavelet packet entropy. The wavelet packet
coefficient vector of the ith scale is recorded as

= …S S S S( , , , )i i i i j,1 ,2 , (1)

where = …S j n( 1,2, , )i j, is the wavelet packet coefficient of the ith scale.
The coefficient vectors of all scales form a coefficient matrix

= …S i m{ }, 1,2, ,i , where m is the scale of wavelet packet

Fig. 10. Calculation of NDAP and PDD of a sub-region.

Fig. 11. The decomposition trees of wavelet and wavelet packet.

Fig. 12. Datum transformation of sub-region plane.

D. Huang et al. Precision Engineering 53 (2018) 79–95

84



Fig. 13. Selection of largest rectangular region containing valid data.

Fig. 14. Selection of rectangular region that only contains valid data.

Fig. 15. A two-layer decomposition tree of 2-D Wavelet packet.

Fig. 16. Cylinder head of B12 engine with four combustion chambers.
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decomposition. The norm vector of the wavelet packet coefficient ma-
trix to measure the divided sub-region at each scale, that is, the energy
of each scale is used to measure the proximity of the decomposed
components of each scale. Normalize the energy vector Ei and analyze
structure and complexity of the divided sub-region through distribution
of the normalized energy vector. The energy of the ithscale is defined as

∑= =
=

E S Si i j

n
i j

2
1 ,

2

(2)

The distribution of energy vector is defined as the normalized energy at

each scale

=p E E/i i (3)

and the total energy is ∑=
=

E E
i

m
i1
.

The entropy based on the energy distribution of each scale of the
wavelet packet is called the wavelet packet entropy and its calculation
is

∑= −
=

WE p plog ( )
i

m
i i1 2 (4)

Fig. 17. On-line measurement equipment based on HDM system.

Fig. 18. The measurement process.

Fig. 19. Actual operation of the on-line measurement equipment.
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2.3.2. Normal vector
The normal vector of each divided sub-region is regarded as the

feature of the divided sub-regions. The plane parametric equation of
Ax+By+Cz+D=0 is calculated by fitting the divided regional

point cloud data. Then the normal vector (A, B, C) of the divided sub-
region is obtained and the steps are described as follows.

Step 1: Delete the points marked as [000] in each sub-region. Since
the divided sub-regions conclude plane point cloud data, there may be

Fig. 20. Point cloud data of a curved surface.

Fig. 21. Boundary of the curved surface.

Fig. 22. Point cloud data of the curved surface after boundary recognition.
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sub-regions that only contain [000] and these sub-regions should be
marked with empty set instead of being deleted in order to ensure that
the overall number of the divided sub-regions is not reduced.

Step 2: Count the number of remaining points in each sub-region.
For the sub-region (effective sub-region) with the number of points
larger than or equal to 3, the random sample consensus (RANSAC) al-
gorithm [24,25] is used to fit the parametric equation of the effective
sub-region and the normal vector is obtained.

2.4. Quality parameters calculation of curved surfaces

Before monitoring quality of the curved surface, the quality of the
divided multiple sub-regions should be evaluated based on the wavelet
packet entropies and normal vector errors. In order to calculate the
wavelet packet entropy, the modulus point cloud data is needed. The
modulus point cloud data is processed by boundary recognition, sub-
region division and calculation of wavelet packet entropy. The wavelet
packet entropies of the modulus point cloud data are regarded as the
criteria to determine whether the corresponding sub-regions in the
curved surface point cloud data is OOL. If the wavelet packet entropy of
the curved surface point cloud data is larger than the wavelet packet
entropy of the modulus point cloud data in the same sub-region, the
sub-region of the curved surface is considered to be OOL. Similarly, the
normal vector error is the angular deviation between the normal vector
of the measured curved surface point cloud data and the normal vector
of the modulus point cloud data in the same sub-region. If the angular
deviation is larger than a threshold, the sub-region of the curved surface
is considered to be OOL. The sub-region of the curved surface is de-
termined to be OOL if either of wavelet packet entropy and the angular
deviation of normal vector is OOL.

When OOL sub-regions of the curved surface are identified, the
quality parameters that represent quality characteristics [15] of the
curved surface are defined as: 1) the number of OOL sub-regions, 2) the
number of OOL sub-regions of the largest cluster, 3) the number of
clusters that contain OOL sub-regions more than a certain value. The
last two quality parameters are calculated by a clustering algorithm
[26] and the procedure of the clustering algorithm involves the fol-
lowing steps.

Step 1: Initialization and preprocessing. 1) Select the parameter
∈t (0,1) to determine the cutoff distance dc. Usually, t ranges from 1% to
2%. 2) Calculate the distance (ddi,j) between any two points, let
ddji= ddij, i < j, i, j ε IS. 3) Determine the cutoff distance dc, which is

used to determine the local density of each point in the data set. Sort the
M1 calculated distances in ascending order, and the order is expressed
as ≤ ≤ …≤dd dd ddM1 2 1. Here, = −M N N( 1)1

1
2 1 1 , and N1 is the number of

all points. Let =d ddc f M t( )1 , f M t( )1 represent an integer that is rounded
to M1t. 4) Calculate the local density ( =ρ{ }i i

N
1

1 ) of each point according to
Eq. (1), and generate subscript sequencer ( =q{ }i i

N
1

1 ) of the local densities
in descending order.

∑= − = ⎧
⎨⎩

<
≥∈

ρ χ d d x x
x( ), χ( ) 1, 0

0, 0i j I i ij c\ { }S
(5)

5) Calculate =δ{ }i i
N

1
1 and =n{ }i i

N
1

1 . δi is the distance defined as

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

≥

=
≥

<

{ }

{ }
δ

d i

δ i

min 2

max 1
q

q q

q

q

j 2

i

i j

j

j

j
i

(6)

ni is the serial number of points closest to xi in the data points with local
densities greater than xi and is calculated by

Fig. 23. Plot of points of a sub-region.

Fig. 24. Distribution of effective sub-regions.
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=

⎧

⎨
⎪

⎩
⎪

≥

=
<

{ }
n

d i

i

arg min 2

0 1

q

q q

q
j ii

i j

j

(7)

Step 2: Determine the clustering center =m{ }j j
n

1
c and initialize the cate-

gory attribute tag ( =c{ }i i
N

1) of the data point. ci is determined by

= ⎧
⎨⎩−c k x k,

1,
is the cluster center and belongs to the cluster

otherwise
i

i
th

(8)

Step 3: Classify the non-clustering center points.
Step 4:If nc > 1, further divide the data in each cluster into cluster

core and cluster halo. 1) Initialize the tag hi=0, i ε IS. 2) Generate an
average local density upper bound

=
ρ{ }i

b
i
n

1
c for each cluster. 3) Identify

cluster halo.
Step 5: The outputs are clusters and the corresponding clustering

centers.
When the clusters of OOL sub-regions have been recognized, the

quality parameters that represent quality characteristics of the curved
surface are calculated by

Fig. 25. Datum transformation of a sub-region.

Fig. 26. OOL sub-regions in the curved surface.

Fig. 27. The clustering result of an example of the curved surface.
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Fig. 28. Curved surface defect monitoring.
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=qc ki1 (9)

=qc Nmax( )i clust2 , (10)

∑=
=

qc S
j

clust

j3
1 (11)

where ki is the number of OOL sub-regions of the ith curved surface, clust
is the number of clusters found on the curved surface, Ni,clust is the size
of the clustth cluster on the ith surface, and Sj is a binary variable with a
value of one when the jth cluster has a size larger than sc and zero
otherwise.

2.5. Monitoring the quality parameters

The individual control chart is used in this monitoring phase. The
centerline (CL), upper control limit (UCL) and lower control limit (LCL)
of the individual control chart are determined by the following equa-
tion:

⎧

⎨
⎩

=
= +
=

CL μ
UCL μ σ
LCL μ σ

3
-3 (12)

where μ is mean and σ is standard deviation. μ and σ are estimated by

= + +…+μ x x x
n

n1 2
(13)

=
− + − +…+ −

σ
x μ x μ x μ

n
( ) ( ) ( )n1

2
2

2 2

(14)

If an OOC condition is found, corrections (e.g. mold maintenance)
should be conducted to ensure the quality of the consecutive curved
surfaces. Otherwise, the manufacturing process of the curved surfaces
should be kept.

3. Case study

In this case, the cylinder heads of B12 serial engines with four
combustion chambers (see Fig. 16) are used to validate the performance
of the proposed approach on detection and monitoring of defects on 3-D
curved surface based on high-density point cloud data. Before the
measurement, the intake and outtake valves are not put into the com-
bustion chambers.

The point cloud data of combustion chambers of B12 engine cy-
linder heads is measured by an on-line HDM measurement machine
using laser triangulation metrology [1]. Fig. 17 is the on-line mea-
surement equipment. Fig. 18 exhibits the measurement process. Fig. 19
shows the actual operation of the on-line measurement equipment.

The field view of the HDM system is within 75×56mm2, and the
depth of field view is 15mm. Accuracy in X (translation direction)
is± 1 μm, accuracy in Y (direction of line laser) is± 10 μm, and ac-
curacy in Z is± 20 μm. Resolution of the system is 0.02mm3.
Repeatability is 0.02ml. The HDM system is developed to measure the
volumes of chambers. The outputs of the HDM system consist of the
volume values and point clouds of the chamber. The design volume of
the chambers is 24.4 ± 0.4ml, which indicates that the measurement
error should be within 0.1 ml. Since the repeatability of the HDM
system is 0.02ml, the measurement error of the HDM system is al-
lowable in the production process.

In this case, the moving speed of the guide rail is set at 10 mm/s,
the acquisition frame rate of the 3-D measurement sensors is 110 f/
s. The scan time of the cylinder head depends on the length of the
cylinder head and speed of guide rail. The scan time of the cylinder
head is 32s. Besides, the measurement time also includes time of
grab (20 s), drop (15 s), and leave (10 s). Therefore, the total mea-
surement time is 77 s, which is less than the cycle time 87.5 s of
manufacturing a cylinder head, and the on-line measurement is
easily implemented. The measurement time of the system is ad-
justable, and faster measurement can be achieved by increasing the
speed of guide rail and acquisition speed of the system. 640 × 1280
is the number of points that are collected from a cylinder head by
the HDM system. It includes the bottom surface and all chambers of
a cylinder head. There are 640 points on a laser line and the total
measurement contains 1280 laser lines. During the measurement,
coordinates of the missing points are represented by specific co-
ordinates and these specific coordinates are same. The points with
same coordinate are regarded as missing points since coordinates of
effective points are different.

3.1. Region division of curved surfaces

In this case, the curved surface of only a chamber is considered. In
order to remove the outliers generated by ambient light interference,
the maximum Z coordinate value is set as 11 cm (the maximum value is
obtained by actual measurement). The threshold for removing outliers
caused by the reflective properties of the curved surface of the work-
piece is determined as 15 since a group of points less than 15 are
considered to be isolated. The result of removing outliers is shown in
Fig. 20. Boundary extraction of the curved surface is conducted and the
result is shown in Fig. 21. The point cloud data of the curved surface (an
inner surface of the chamber) is shown in Fig. 22. The of the In order to
obtain as many small sub-regions as possible, the curved surface is di-
vided into 32×32 sub-regions and a sub-region of them is shown in
Fig. 23. It can be seen from Fig. 23(b) that the divided sub-region is
similar to a plane. The unit of the axes in Fig. 21, Fig. 22 and Fig. 23 is
mm.

3.2. Feature evaluation of each sub-region

After the region division of the curved surface, the effective sub-
regions should be selected since there are sub-regions that are in the
intake and outtake valve holes of the chamber inner surface. The sub-
regions containing less than three points are marked as empty sub-re-
gions and the distribution of the effective sub-regions is shown in
Fig. 24. Before calculation of the wavelet packet entropies and normal
vectors of the effective sub-regions, datum transformation of each sub-
region is conducted and the result is shown in Fig. 25. The unit of the
axes in Fig. 25 is mm.

The wavelet packet entropies and the normal vectors of the sub-
regions of the modulus point cloud data are calculated as the criteria to
evaluate whether sub-regions of the curved surface point cloud data are
qualified. The wavelet packet entropies of some sub-regions are shown
in Table 1 and the normal vector deviations of the same sub-regions are
shown in Table 2.

Fig. 29. Q–Q plot and fitted linear model for a curved surface in-control manufacturing
process.

D. Huang et al. Precision Engineering 53 (2018) 79–95

91



In Table 1, the wavelet packet entropy of each measured sub-region
is larger than the corresponding modulus sub-region. The reason is that
the quality of the curved surface is inferior to quality of the designed
modulus due to the errors in the manufacturing process. Therefore, it is
not reasonable to use the wavelet packet entropies of the modulus sub-
regions as the absolute limit to determine whether the sub-regions of
the curved surface are OOL. A threshold value should be added to the
limit of each sub-region. In this case, the threshold value is set as 0.5.
That is, if the wavelet packet entropy difference of the curved surface

sub-region and its corresponding modulus sub-region is larger than 0.5,
the sub-region of the curved surface is considered to be OOL.

In Table 1, the 8th sub-region is an OOL sub-region. The limit of
deviation degree is set as 0.5 based on engineering experience and there
are two sub-regions (6th and 10th sub-region) are regarded as OOL in
Table 2. Therefore, the 6th, 8th, and 10th sub-regions are OOL regions
of the 14 sub-regions. An example of the curved surface that contains
OOL sub-regions is shown in Fig. 26 and the OOL sub-regions are
marked with red.

Fig. 30. Two EWMA control charts for monitoring y-intercept and slope.

D. Huang et al. Precision Engineering 53 (2018) 79–95

92



3.3. Quality parameters calculation of curved surfaces

Once the OOL sub-regions in the curved surface are identified, three
quality parameters that represent quality characteristics of the curved
surface are quantified by numerical values. For the example shown in
Fig. 26, the number of OOL sub-regions is 27. Since the values in Fig. 26
and Fig. 27 represent count values, there are no units for the axes in the
two figures. Therefore, the first quality parameter is qc1= 27. The
second quality parameter qc2 is calculated by the clustering algorithm
described in sub-section 2.4 and the clustering result is shown in
Fig. 27. It can be seen from Fig. 27 (b) that the cluster marked with
green contains the largest number (the number is 16) of bad sub-re-
gions. Then the second quality parameter is qc2= 16. The numbers of
OOL sub-regions in the four clusters are 16, 7, 2, and 2, respectively.
For the curved surface of a chamber, the number of effective sub-re-
gions is about 500 under the region division of 32×32. The threshold
sc is determined to be 3 based on engineering experience, which means
that a cluster containing more than 3 OOL sub-regions is considered. In
the example, there are 2 clusters containing more than 3 OOL sub-re-
gions. Thus, the third quality parameter is qc3= 2.

3.4. Monitoring the quality parameters

In order to monitor the condition of the curved surface of chambers,
three individual control charts are conducted to monitor the three
quality parameters. In this case, 20 combustion chambers of qualified
volumes are randomly sampled with time series and the point cloud
data of the 20 curved surfaces are collected. The point cloud data is
processed by procedures mentioned in Sub-section 2.2, 2.3 and 2.4. The
values of three quality parameters of the 20 curved surfaces are shown
in Table 3.

The CL, UCL, and LCL of three individual control charts are calcu-
lated according to Eqs. (15)–(17). Then the three individual control

charts are conducted and shown in Fig. 28. There are no units for the y-
axes in Fig. 28 since the three parameters are of no units.
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In Fig. 28, parameters of the 21th curved surface are qc1= 27,
qc2= 16, and qc3= 2. It can be seen that qc1 and qc2 are both out of the
control range, and qc3 is in the control range. Therefore, the manu-
facturing process of the curved surface is OOC. If there appears con-
tinuous OOC manufacturing process of curved surfaces, the correction
should be conducted. For the bad sub-regions of curved surfaces of
combustion chambers in this case, the main reason is that the mold of
the chamber is worn and mold maintenance is needed.

In order to evaluate the detection accuracy of the proposed ap-
proach, 10 OOC conditions are recorded and the entire mold is in-
spected to find the bad sub-regions. Assume that the number of bad sub-
regions of the mold is U1, the number of the same bad regions of the
mold and the curved surface is U2. Then the detective accuracy is cal-
culated by Eq. (18) and the detective accuracy of the proposed ap-
proach is shown in Table 4.

= ×U
U

Detcetiveaccuracy 100%1

2 (18)

According to Table 3, the average detective accuracy of the proposed
approach is 83.95%. The detective accuracy and average detective ac-
curacy can satisfy requirements of the mold maintenance. It is not ne-
cessary to inspect the entire mold since the defective sub-regions of the
mold can be identified by the OOL sub-regions of the curved surfaces.

Table 2
Normal vector deviations of sub-regions of the curved surface.

Index\sub-region Measured sub-region Modulus sub-region Deviation(degree)

1 (−0.398, −0.004, −1) (−0.399, −0.003, −1) 0.073
2 (−0.288, −0.008, −1) (−0.292, −0.011, −1) 0.268
3 (−0.289, −0.007, −1) (−0.291, −0.007, −1) 0.106
4 (−0.305, −0.002, −1) (−0.302, −0.003, −1) 0.167
5 (0.004, 0.002, −1) (0.003, −0.002, −1) 0.237
6 (0.511, −0.021, −1) (0.509, −0.011, −1) 0.518
7 (0.261, 0.011, −1) (0.258, 0.009, −1) 0.195
8 (0.341, −0.0003, −1) (0.342, 0.0007, −1) 0.075
9 (0.272, −0.001, −1) (0.268, 0.003, −1) 0.308
10 (0.398, −0.014, −1) (0.369, −0.009, −1) 1.472
11 (−0.280, −0.002, −1) (−0.283, −0.003, −1) 0.169
12 (−0.302, −0.004, −1) (−0.298, 0.001, −1) 0.346
13 (−0.013, −0.016, −1) (−0.010, −0.014, −1) 0.207
14 (0.380, 0.003, −1) (0.383, 0.005, −1) 0.184

Table 1
Wavelet packet entropies of sub-regions of the curved surface and modulus.

Sub-region
\index

1 2 3 4 5 6 7

Measured sub-
region

0.0189 0.0169 0.0207 0.0272 0.0234 0.0226 0.0184

Modulus sub-
region

0.0177 0.0155 0.0216 0.0240 0.0228 0.0145 0.0135

Sub-region
\index

8 9 10 11 12 13 14

Measured sub-
region

0.1085 0.0226 0.0292 0.0254 0.0220 0.0271 0.0229

Modulus sub-
region

0.0243 0.0209 0.0256 0.0137 0.0172 0.0135 0.0139
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The locations of OOL sub-regions on the curved surface corresponds to
the locations of the mold to be inspected. Therefore, the mold main-
tenance only needs focus on checking the OOL sub-regions with fixed
locations.

3.5. Comparison of the profile monitoring method based on Q–Q plot

In order to validate the performance of the proposed approach, the
profile monitoring technique based on Q–Q plot [27,28] is used for
comparison. For a process where a measured point cloud data is col-
lected as a distribution of points, in-control point cloud data will pro-
duce highly linear Q–Q plot while out-of-control point clouds will result
in a Q–Q plot deviating from linearity. Wang et al. [29] pointed out that
this relationship could be monitored as a linear profile characterized by
its y-intercept and slope, which can be monitored by two EWMA control
charts. In this case, the data for Q–Q plot is the deviation of Z co-
ordinate values of corresponding points (values of coordinate (x, y)
should be the same) between the measured point cloud data and the
modulus point cloud data. An example of Q–Q plot for a curved surface
in-control manufacturing process is shown in Fig. 29. The monitoring of
defects on three-dimensional curved surfaces is transforming into
monitoring parameters (y-intercept and slope) of the fitted linear
model. Two EWMA control charts for monitoring intercept and slope
are shown in Fig. 30. There are no units for y-axes in Fig. 30 since the
slope and y-intercept are represented by values without units.

It can be seen from Fig. 30 that the two parameters are within the
control limits for the point cloud data of the 21 sampled curved sur-
faces, which indicates that the manufacturing process of the chambers
is in control. However, the manufacturing process of the chambers is
out of control from the 21th curved surface according to the result of
the proposed method. It means that the monitoring method based on
Q–Q plot are not able to identify OOC process in time when compared
to the proposed method. The reason is that the positions of the mea-
sured points (represented by coordinate (x, y)) for different chambers
may not be same due to the positioning error in measurement, and the
number of the modulus point cloud data is equal to the number of the
measured point cloud data. The corresponding points between the
measured point cloud data and the modulus point cloud data are not in
the same position (values of coordinate (x, y) are different), which re-
sults in inaccurate monitoring results. However, the curved areas of the
modulus point cloud data and measured point cloud data are the same
for sub-region division of the proposed method, and the divided sub-
regions of the modulus point cloud data and measured point cloud data

are one-to-one correspondence. Thus, the positions of the measured
points have no effect on the monitoring result of the proposed method.
Besides, there is no appropriate method to detect the location of the
defects on the curved surface, since the spatial aspect of the data is lost
when transforming the point cloud data into Q–Q plot. Therefore, the
monitoring and detecting performance of the proposed method is su-
perior to the profile monitoring method based on Q–Q plot.

4. Conclusions

This paper has developed a systematic approach for detection and
monitoring of defects on 3-D curved surfaces based on high-density
point cloud data, which consists of region division of curved surfaces,
feature evaluation of each sub-region, quality parameters calculation of
curved surfaces, and monitoring the quality parameters. The region
division of curved surfaces is conducted to divide the curved surface
into multiple sub-regions (each sub-region is similar to a plane) that are
decomposed by wavelet packet. Wavelet packet entropy and normal
vector are calculated to represent the NDAP and PDD features of the
multiple sub-regions. Wavelet packet entropy and normal vector of the
modulus point cloud data also need to be calculated as the criteria to
determine whether sub-regions of the curved surface are OOL. When
the OOL sub-regions are identified, three quality parameters that re-
present quality characteristics of the curved surface are calculated
based on the clusters of the OOL sub-regions. Then, three individual
control charts are proposed to monitor the three quality parameters. As
long as any quality parameter is out of the control range, the manu-
facturing process of the curved surface is determined to be OOC. A case
study of curved surfaces of cylinder head combustion chambers sam-
pled in time series is conducted to validate performance of monitoring
and detection of defects on curved surfaces. The results demonstrate
that the proposed approach can identify the OOC manufacturing pro-
cess of 3-D curved surfaces and accurately detect the locations of the
OOL sub-regions from the curved surfaces in OOC manufacturing pro-
cess. The comparison with other monitoring methods (for example,
profile monitoring based on Q–Q plot) for high-density point cloud data
of 3-D curved surfaces shows that the proposed method is more reliable
when there exists positioning error in measurement, and shows good
performance of identifying locations of defects.
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