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Modelling and joint monitoring of input and output of systems with arbitrary order
autoregressive disturbance
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Engineering and Management, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, P.R. China

(Received 12 January 2015; accepted 22 July 2015)

Considerable studies have been done on modelling and joint monitoring of input and output of systems with autoregressive
moving average (ARMA) disturbance. Most of these studies focus on systems with ARMA (1, 1) disturbance. However,
many kinds of systems are not conform to ARMA(1, 1) disturbance. Motivated by the fact that an autoregressive (AR)
model with high order can be implemented to approximate the stationary ARMA model at any precision, a new generic
model and a joint monitoring scheme of systems with arbitrary order AR(p) disturbance are developed. A minimum mean
squared error (MMSE) controller with arbitrary order AR disturbance is designed to reduce the system variability. The
mathematical expectation and average run length of MMSE-controlled outputs are derived. A new joint chart for monitoring
the input and output simultaneously is explored. Two out-of-control rules for the joint monitoring chart are developed. The
monitoring performances of the input chart, the output chart and the joint monitoring chart are also discussed. The results of
simulation experiments and case studies validate the effectiveness of the developed model and joint monitoring chart.

Keywords: autoregressive disturbance; MMSE controller; joint monitoring; statistical process control; engineering
process control

1. Introduction

The ability to reduce system variation for quality control and productivity improvement in manufacturing and service
systems plays an essential role in the success of enterprises in today’s globally competitive marketplace (Du et al. 2008;
Montgomery 2009). Amongst various techniques applied to reduce system variation and achieve system stability,
statistical process control (SPC) and engineering process control (EPC) are two powerful tools that are widely used in
manufacturing and service systems. Montgomery et al. (1994) pointed out that the SPC and EPC integration model is
effective to the process monitoring and adjustment and that proper employing both SPC and EPC can always outper-
form the application of either alone. The integration of SPC and EPC has attracted lots of attentions from both academia
and industry (e.g. Messina et al. 1996; Jiang and Tsui 2002; Park et al. 2012). However, there is an adverse impact
called as the limited ‘window of opportunity’ in the integrated area (Vander Wiel 1996). Window of opportunity is a
short interval immediately after the occurrence of a special cause within which a signal can be detected (Wang and
Tsung 2007). Once a special cause occurs, the feedback controller can immediately compensate process outputs, which
will result in that the SPC chart is difficult to perceive the special cause. Therefore, the SPC chart will not have an
excellent monitoring performance, if its monitoring object is only process outputs without consideration of manipulated
inputs.

Because manipulated inputs can reflect the occurrence status of process faults, Messina et al. (1996) studied the
monitoring of manipulated inputs for a minimum mean squared error (MMSE)-controlled process under an autoregres-
sive moving average (ARMA) disturbance model. Tsung, Shi, and Wu (1999) and Tsung and Shi (1999) developed the
joint chart to simultaneously monitoring Proportional-Integral-Derivative (PID)-controlled outputs and control actions.
Similarly, Jiang and Tsui (2002) compared monitoring performances of the process output and the control action of
MMSE- and Proportional-Integral (PI)-controlled ARMA(1, 1) processes, respectively. It was found that under a large
mean shift, monitoring the process output is always more efficient than monitoring the manipulated variable; under a
small mean shift, when ϕ < 0 (ϕ is process parameter), it is consistent with the preceding conclusion; while it is in con-
trast to the preceding conclusion when ϕ > 0. Jiang (2004) proposed a joint monitoring scheme which combines the data
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streams of process outputs and manipulated inputs based on a uniformly most powerful test. The scheme can be
adjusted to be sensitive to large or small shifts.

However, all of the current joint charts are based on ARMA(1, 1) disturbance model, and there is no research on
dealing with the processes under arbitrary order disturbance models. Many kinds of production processes are not
conformed to the ARMA(1, 1) disturbance model. For example, an autoregressive AR(4) model is appropriate for a
mechanical system consisting of a mass, a dashpot and a spring, and an AR(6) model is used to fit the micrometre
readings of two diameters on the same machined part (Pandit and Wu 1983). A series consisting of 226 temperature
readings are fitted as an AR(3) model (Peña, Tiao, and Tsay 2011). An aircraft horizontal stabiliser assembly process of
2781 product data is fitted as an AR(5) model (Du and Xi 2010, 2011). A valve shell machining process is fitted as an
AR(6) model (Du, Yao, and Huang 2015). More examples about high-order processes can be found in Bowerman and
O’Connell (1993) and Brockwell and Davis (2002). This effort is motivated by the fact that an AR(p) model can imple-
ment approximating the stationary ARMA model at any precision. The main contribution of this study is that a new
joint monitoring scheme of processes with arbitrary order AR(p) disturbance is developed.

The remainder of this study is organised as follows. The process model of the linear dynamic feedback is proposed
and an MMSE controller is designed in Section 2. The mathematical expectation and the average run length (ARL) of
MMSE-controlled outputs are derived in Section 3. The joint chart is designed, its out-of-control rules are developed
and its performance analysis is presented in Section 4. Case studies are conducted in Section 5. Finally, conclusions are
given in Section 6.

2. MMSE-controlled process model

The MMSE controller and the PID controller are two common EPC controllers in industrial practice. The PID controller
is more robust than the MMSE controller with regard to disturbance model uncertainty when the model parameter is
incorrectly estimated (Tsung, Wu, and Nair 1998). However, MMSE-controlled outputs are independent identical dis-
tribution (IID), that is, MMSE controller can eliminate the autocorrelation of process outputs. Besides, the MMSE
scheme can minimise the mean squared error (MSE), so the control performance of MSE of the PID controller is always
inferior to that of the MMSE controller. Therefore, for the convenience of the research on the AR(p) process, it is
assumed that the process can be accurately estimated. This study focuses on the MMSE-controlled processes and the
output of the process can be reduced to a white noise by the MMSE controller.

Let et denote the process output at instant t, Xt manipulated variable and its initial value X0 = 0, Dt the process
disturbance, μt the mean shift and B the backward shift operator. Without loss of generality, assume the target value of
the process output is zero. Because the output from the process dynamics Yt = Xt–1 in the most of discrete part
manufacturing systems, the process output et can be defined as:

et ¼ Yt þ Dt þ lt ¼ Xt�1 þ Dt þ lt (1)

It is noteworthy that the process disturbance Dt needs a specific time series model. Vander Wiel (1996) used the first-
order integrated moving average (IMA(0, 1, 1)) model to study the process monitoring. Box, Tiao, and Bisgaard (2000)
emphasised the use of non-stationary models, including the IMA(0, 1, 1) model. Meanwhile, because most of process
disturbances can be modelled as stationary processes, Tsung and Shi (1999), Jiang and Tsui (2002) and Jiang (2004) all
used a stationary ARMA(1, 1) model to study the monitoring of process outputs and control actions. However, the
high-order time series models have not been widely studied so that the applicable scope of the joint monitoring chart is
restricted. Therefore, this study assumes Dt as a stationary AR(p) process, i.e.:

Dt ¼ u1Dt�1 þ u2Dt�2 þ � � � þ upDt�p þ at ¼ 1

1� u1B� � � � � upBp
at (2)

where φ1, φ2, … , φp represent process parameters, and at represents a white noise variable with an in-control mean of
zero and variance r2a.

There exists no mean shifts under a normal in-control process, i.e. μt = 0 in Equation (1). Then, the process output
et follows:

et ¼ Xt�1 þ Dt (3)

The one-step-ahead forecast error of the process disturbance Dt that minimises the MSE is
etð1Þ ¼ Dtþ1 � bDtð1Þ ¼ atþ1 given by Box, Jenkins, and Reinsel (2013) on the condition that Dt follows an AR(p)
model. Then, the one-step-ahead forecast equation of Dt for an AR(p) model is
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bDtð1Þ ¼ Dtþ1 � atþ1 ¼ ðu1 þ u2Bþ � � � þ upB
p�1ÞDt ¼

u1 þ u2Bþ � � � þ upB
p�1

1� u1B� � � � � upBp
at (4)

In order to ensure that et+1 does not deviate from its target value of zero, the manipulated variable Xt, based on
Equation (3), should satisfy Xt ¼ �bDtð1Þ, i.e.:

Xt ¼ �u1 þ u2Bþ � � � þ upB
p�1

1� u1B� � � � � upBp
at (5)

Now substituting Equations (2) and (5) into Equation (3), then et becomes:

et ¼ �u1 þ u2Bþ � � � þ upB
p�1

1� u1B� � � � � upBp
at�1 þ 1

1� u1B� � � � � upBp
at

) ð1� u1B� � � � � upB
pÞet ¼ �ðu1 þ u2Bþ � � � þ upB

p�1Þat�1 þ at ¼ ð1� u1B� � � � � upB
pÞat

that is,

et ¼ at (6)

By Equation (6), MMSE-controlled process outputs are adjusted to a white noise series and eliminate its auto-
correlated characteristic, and r2e ¼ r2a. Substituting Equation (6) into Equation (5), under the AR(p) disturbance process,
the MMSE controller can be obtained:

Xt ¼ �u1 þ u2Bþ � � � þ upB
p�1

1� u1B� � � � � upBp
et (7)

and Equation (7) becomes

Xt � u1Xt�1 � � � � � upXt�p ¼ �u1 et þ u2

u1
et�1 þ � � � þ up

u1
et�pþ1

� �
(8)

Since the ARMA process of Equation (8) is stationary, the manipulated variable Xt can be expanded into
Xt ¼ �u1

P1
k¼0 Gket�k , where Gk is Green function and the variance of Xt follows:

r2X ¼ u2
1r

2
e

X1
k¼0

G2
k (9)

Assume that there are no identical roots in the characteristic equation of Equation (8) and that k1; k2; . . .; kp are p
different roots, which can be determined by solving the equation kp � u1k

p�1 � � � � � up ¼ 0. Then, Green function Gk

can be written as:

Gk ¼ g1k
k
1 þ g2k

k
2 þ � � � þ gpk

k
p (10)

where

gi ¼
kp�1
i þ u2

u1
kp�2
i þ � � � þ up

u1Qp
j¼1
j6¼i

ðki � kjÞ ¼ 1

u1

u1k
p�1
i þ u2k

p�2
i þ � � � þ upQp

j¼1
j6¼i

ðki � kjÞ ¼ 1

u1

kpiQp
j¼1
j 6¼i

ðki � kjÞ (11)

Substituting Equation (11) into Equation (10), then Gk becomes:

Gk ¼ 1

u1

Xp
i¼1

kpþk
iQp

j¼1
j6¼i

ðki � kjÞ (12)

Substituting Equation (12) into Equation (9), then the variance of Xt is

r2X ¼ r2e
X1
k¼0

Xp
i¼1

kpþk
iQp

j¼1
j6¼i

ðki � kjÞ

264
375
2

(13)

1824 S. Du and R. Zhang



where k1; k2; . . .; kp are the roots of the characteristic equation kp � u1k
p�1 � � � � � up ¼ 0, and Equation (13) is

convergent because jkij\1.
When the disturbance model of the process is AR(2) model, the solution of Equation (13) has the form:

r2X ¼ r2e
ðk1 � k2Þ2

k41
1� k21

þ k42
1� k22

� 2k21k
2
2

1� k1k2

 !
(14)

where k1 and k2 are two different roots of the equation k2 � u1k� u2 ¼ 0.

3. SPC monitoring of MMSE-controlled outputs

3.1 The expectation of process outputs

Now suppose a step shift of δσe occurs in the process after instant t = 0 (Wardell, Moskowitz, and Plante 1994), i.e.:

lt ¼ 0; t� 0
dre; t[ 0

�
(15)

Substituting Equations (2), (7) and (15) into Equation (1), the process output can be obtained as:

et ¼ �u1 þ u2Bþ � � � þ upB
p�1

1� u1B� � � � � upBp
et�1 þ 1

1� u1B� � � � � upBp
at þ lt; t� 1

) ð1� u1B� � � � � upB
pÞet ¼ �ðu1 þ u2Bþ � � � þ upB

p�1Þet�1 þ at þ ð1� u1B� � � � � upB
pÞlt

i.e.

et ¼ at þ ð1� u1B� � � � � upB
pÞlt; t� 1 (16)

Then, the mathematical expectation of et is

EðetÞ ¼

l; t ¼ 1

1�Pt�1

i¼1
ui

� �
l; 2� t� pþ 1

1�Pp
i¼1

ui

� �
l; t[ pþ 1

8>>>><>>>>: (17)

Similarly, the mathematical expectation of X t�1 is

EðXt�1Þ ¼

0; t ¼ 1

� Pt�1

i¼1
ui

� �
l; 2� t� pþ 1

� Pp
i¼1

ui

� �
l; t[ pþ 1

8>>>><>>>>: (18)

3.2 The ARL of the output chart

The evaluation index ARL is used to assess the performance of the SPC monitoring. The traditional Shewhart chart can
be used to monitor the process output et, which meets the IID characteristic. Let Le denote the coefficient of the control
limits of the output chart, and pt denote the probability that et locates within control limits at instant t, then:

pt ¼ Uf�Lere\et\Lereg ¼ U �Lere�EðetÞ
re

\U\ Lere�EðetÞ
re

n o
¼ U �Le � EðetÞ

re
\U\Le � EðetÞ

re

n o
Namely
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pt ¼

UðLe � dÞ � Uð�Le � dÞ; t ¼ 1

U Le � 1�Pt�1

i¼1
ui

� �
d

� �
� U �Le � 1�Pt�1

i¼1
ui

� �
d

� �
; 2� t� pþ 1

U Le � 1�Pp
i¼1

ui

� �
d

� �
� U �Le � 1�Pp

i¼1
ui

� �
d

� �
; t[ pþ 1

8>>>><>>>>: (19)

Let Pr(t) denote the probability that the Shewhart chart gives an out-of-control signal at instant t, then Pr(t) is given by:

PrðtÞ ¼

1� p1; t ¼ 1

ð1� ptÞ
Qt�1

i¼1
pi; 2� t� pþ 1

pt�p�1
pþ1 ð1� ppþ1Þ

Qp
i¼1

pi; t[ pþ 1

8>>>><>>>>: (20)

When p = 1,

PrðtÞ ¼ 1� p1; t ¼ 1
p1pt�2

2 ð1� p2Þ; t� 2

�
Then,

ARLe ¼
X1
k¼1

kPrðkÞ ¼ 1� p1 þ
X1
k¼2

kp1p
k�2
2 ð1� p2Þ ¼ 1� p1 þ p1ð1� p2Þ 1

p2

X1
k¼1

kpk�1
2 � 1

 !

ARLe ¼ 1þ p1 � p2
1� p2

where
X1

k¼1
kxk�1 ¼ 1

ð1� xÞ2 ; jxj\1.

That is, ARLe ¼ 1þ p1 � p2
1� p2

.
When p ≥ 2,

ARLe ¼ 1 � Prð1Þ þ � � � þ p � PrðpÞ þ
X1
k¼pþ1

kPrðkÞ

ARLe ¼ 1 � ð1� p1Þ þ � � � þ p � p1 � � � pp�1ð1� ppÞ þ
X1
k¼pþ1

kp1. . .ppð1� ppþ1Þpk�p�1
pþ1

ARLe ¼ 1� p1 þ
Xp
i¼2

ið1� piÞ
Yi�1

j¼1

pj þ p1 � � � ppð1� ppþ1Þ
X1
k¼pþ1

kpk�p�1
pþ1

and X1
k¼p

kpk�p
p ¼

X1
k¼0

ðk þ pþ 1Þpkpþ1 ¼ ppþ1

X1
k¼1

kpk�1
pþ1

 !
þ ðpþ 1Þ

X1
k¼0

pkpþ1 ¼
ppþ1

ð1� ppþ1Þ2
þ pþ 1

1� ppþ1

ARLe ¼ 1� p1 þ
Xp
i¼2

ið1� piÞ
Yi�1

j¼1

pj þ p1 � � � ppð1� ppþ1Þ ppþ1

ð1� ppþ1Þ2
þ pþ 1

1� ppþ1

" #

ARLe ¼ 1� p1 þ
Xp
i¼2

ið1� piÞ
Yi�1

j¼1

pj þ ppþ1

1� ppþ1
þ pþ 1

� �Yp
i¼1

pi

Therefore,
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ARLe ¼
1þp1�p2
1�p2

; p ¼ 1

1� p1 þ
Pp
i¼2

ið1� piÞ
Qi�1

j¼1
pj þ ppþ1

1�ppþ1
þ pþ 1

� � Qp
k¼1

pk ; p� 2

8><>: (21)

where pi, pj, pk can be obtained by solving Equation (19). In particular, when p = 2, the solution of Equation (21) has
the form:

ARLe ¼ 1þ p1 þ p1p2
1� p3

(22)

Because X t is the linear combination of the sets of etf g, which can be seen from Equation (7), X t follows the nor-
mal distribution. Let LX denote the coefficient of the control limits of the input Shewhart chart. Similarly, the probability
that X t�1 locates within control limits can be obtained as:

p0t ¼

UðLX Þ � Uð�LX Þ; t ¼ 1

U LX þ re
rX

Pt�1

i¼1
ui

� �
d

� �
� U �LX þ re

rX

Pt�1

i¼1
ui

� �
d

� �
; 2� t� pþ 1

U LX þ re
rX

Pp
i¼1

ui

� �
d

� �
� U �LX þ re

rX

Pp
i¼1

ui

� �
d

� �
; t[ pþ 1

8>>>><>>>>: (23)

Then, the ARLs of the input Shewhart chart can be obtained by Equation (21), if only pt in Equation (21) is
replaced by p0t.

4. The proposed joint monitoring chart

4.1 Design of the joint monitoring chart

In an attempt to simultaneously monitor the manipulated variable and the process output, the bivariate random variable

(X, Z) is chosen to be the monitored characteristics, where X ¼ Xt�1
rX

n o
and Z ¼ et

re

n o
. X and Z are uncorrelated because

covðXt�1; etÞ ¼ 0, which can be seen from Equation (7). Let f(x, z) denote the joint probability density function of
(X, Z), and α denote the overall false alarm probability. In view of the fact that the overall process variability can be
illustrated by the distance from the plotted point to the origin of coordinates, the joint chart can monitor the circular
areas, whose radius L follows: ZZ

x2þz2 �L2
f ðx; zÞdxdz ¼ 1� a (24)

The radius of the monitoring areas of the joint chart is chosen to achieve a specific in-control ARL0, which is deter-
mined via Monte Carlo simulation.

(1) The first out-of-control rule
The joint chart gives an out-of-control signal as soon as a monitoring point exceeds the in-control areas in

Figure 1. That is: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xt�1

rX

� �2

þ et
re

� �2
s

� L (25)

(2) The second out-of-control rule
If the plotted points falling within the control limits exhibit a certain non-random pattern of behaviour, the

process is also out of control. Because X t�1 is auto-correlated in the bivariate random variable (X, Z), the auto-
correlations of manipulated variables make it difficult to obtain the probability that non-random events occur in
the joint chart.

The event A that m sequential points locate within the control limits but locate in the same quadrant is an
exception. Take the first quadrant as an example, the occurrence probability of the event A
follows PðAÞ�Pfz1; z2; . . .; zm 2 ð0; LÞg ¼ ½PfZ 2 ð0; LÞg�m, where PfZ 2 ð0; LÞg ¼ UðLÞ � 0:5 and
a ¼ PðAÞ� ðUðLÞ � 0:5Þm, then m can be obtained as:
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m ¼ log a
logðUðLÞ � 0:5Þ
	 


(26)

where the symbol ½ � denotes the integral function.
For example, assume that the bivariate random variable (X, Z) follows the bivariate normal distribution, that is

f ðx; zÞ ¼ 1
2p expf� x2þz2

2 g, and let α = 0.0027, then m = 8 by solving Equations (25) and (26). In other words, the joint
chart will give an out-of-control signal when eight sequential plotted points locate in the same quadrant.

4.2 Performance analysis of the joint monitoring chart

The ARL property is investigated to evaluate the performance of the joint chart in this section. Because ARMA(1, 1)
model includes AR(1) model, the simulation analysis for AR(1) models is no longer needed at here. Then, judging from
Equation (21), when p ≥ 2, the ARLs of the output chart and the input chart are the functions with respect to p1, p2, …
,pp, respectively, and pi is the function with respect to

Pp
i¼1 ui judging from Equation (23), namely the variation law of

the ARLs mainly depends on
Pp

i¼1 ui. On behalf of all high-order AR(p) model, the AR(2) model is hereby applied to
conduct the performance analysis.

In order to fairly compare the performance of the output chart, the input chart and the joint chart, their coefficients
of the control limits are adjusted so that the in-control ARL0 equals 370. Then, under different mean shifts including
δ = 0.5, 1, 3 and 5, Tables 1 and 2 present the ARLs of the output chart, the input chart and the joint chart of ten
MMSE-controlled stationary AR(2) processes when the parameter φ1 < 0 and φ1 > 0, respectively. The ARLs of the out-
put chart and the input chart can be obtained by solving Equation (22), while the ARLs of the joint chart only can be
obtained by means of Monte Carlo simulation.

The ARLs in Tables 1 and 2 show that the joint chart can take advantage of strengths of the output chart and the
input chart under various AR(2) processes to improve the monitoring performance. The major findings are

(1) For large mean shifts (δ ≥ 5), monitoring the process output is always more efficient than monitoring the
manipulated action. For small mean shifts (δ ≤ 3), the better choice depends on the values of φ1. When φ1 < 0,
monitoring the process output is more efficient; when φ1 > 0, exactly the opposite.

In terms of small mean shifts, a further detailed analysis is implemented. Figures 2 and 3 are the contour
plots of the ARLs for the output chart when φ1 < 0 and the input chart φ1 > 0, respectively. We can draw a con-
clusion that the output chart, compared to the input chart in Table 1, has an excellent monitoring performance
when φ1 < 0 by the fact that most of ARLs are lower than 50 in Figure 2. However, only few of ARLs of the
input chart are lower than 50 in Figure 3. It demonstrates that the input chart is still not a good choice in terms
of monitoring performance.

(2) When the values of φ1 + φ2 are closer to 1, the monitoring performances of the output chart, the input chart and
the joint chart will be worse. As is illustrated in Equation (19), the monitoring performances of the output chart,

Figure 1. The monitoring areas of the joint chart.
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Table 1. ARL comparisons of output, input and joint charts (φ1 < 0).

ARL

(φ1, φ2) δ Output Input Joint Tsung’s

(–1.5, −0.56) L = 3.316 L = 3.206
0 370.40 370.40 369.89 735.66
0.5 15.47 292.25 21.29 22.80
1 3.27 157.31 3.81 3.87
3 1.50 16.66 1.63 1.59
5 1.02 5.23 1.05 1.04

(–1.1, –0.30) L = 3.335 L = 3.206
0 370.40 370.40 369.16 743.01
0.5 28.93 196.83 35.96 45.78
1 4.88 68.55 5.69 6.08
3 1.50 4.99 1.63 1.58
5 1.02 2.43 1.05 1.04

(–1.0, −0.10) L = 3.314 L = 3.206
0 370.40 370.40 369.46 741.18
0.5 39.90 279.07 51.59 63.93
1 6.44 153.66 8.39 8.50
3 1.50 14.59 1.63 1.58
5 1.02 4.05 1.05 1.04

(–0.9, −0.08) L = 3.328 L = 3.206
0 370.40 370.40 369.57 736.13
0.5 45.75 237.46 57.23 75.36
1 7.47 108.09 9.27 10.14
3 1.50 8.18 1.63 1.58
5 1.02 2.82 1.05 1.04

(–0.6, 0.16) L = 3.328 L = 3.206
0 370.40 370.40 370.71 730.38
0.5 87.90 302.41 106.95 154.39
1 17.10 185.87 22.27 26.28
3 1.52 22.38 1.66 1.62
5 1.02 4.82 1.05 1.04

(–0.5, 0.14) L = 3.336 L = 3.206
0 370.40 370.40 369.27 738.90
0.5 97.39 281.07 115.15 171.91
1 20.03 160.04 25.19 30.75
3 1.54 15.85 1.67 1.65
5 1.02 3.24 1.05 1.04

(–0.5, −0.06) L = 3.341 L = 3.206
0 370.40 370.40 370.59 737.24
0.5 75.85 148.84 77.64 131.37
1 14.15 41.53 13.45 20.88
3 1.54 3.06 1.65 1.64
5 1.02 2.05 1.05 1.04

(–0.1, 0.56) L = 3.341 L = 3.206
0 370.40 370.40 370.06 738.29
0.5 268.23 247.41 261.01 513.83
1 134.78 113.99 121.07 247.77
3 3.78 10.17 4.19 6.39
5 1.02 3.86 1.05 1.04

(–0.1, 0.30) L = 3.361 L = 3.206
0 370.40 370.40 369.83 738.38
0.5 199.32 261.79 216.04 373.88
1 69.89 129.81 78.82 122.28
3 2.19 11.58 2.75 2.87
5 1.02 4.09 1.05 1.04

(Continued)
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the input chart and the joint chart sharply decline when φ1 + φ2 → 1. For example, when φ1 = 1.1 and
φ2 = –0.24 or φ1 = 1.6 and φ2 = –0.64 in Table 2, those charts are not very efficient.

(3) For large mean shifts (δ ≥ 5), the monitoring performance of the joint chart is generally similar to that of the
better one in the individual chart. For small mean shifts (δ ≤ 3), when φ1 < 0, the ARLs of the joint chart are in
close proximity to those of the output chart with better monitoring performance; when φ1 > 0, the joint chart is
similar to the individual output chart and it is significantly superior to the individual input chart.

(4) Our joint chart outperforms the joint chart based on Bonferroni’s approach developed by Tsung, Shi, and Wu
(1999) in most of the cases, but slightly worsens for large mean shifts (δ ≥ 5) when φ1 < 0. Particularly when
smaller mean shifts (δ ≤ 3) occur, our joint chart has an overwhelming predominance than the joint chart based
on Bonferroni’s approach developed by Tsung, Shi, and Wu (1999).

Furthermore, a specific analysis is taken for the joint chart under small mean shifts. Figures 4 and 5 are the contour
plots of the ARLs for the joint chart when δ = 1 and δ = 3, respectively. These two figures show that most of ARLs are
lower than 100 when δ = 1 and that most of ARLs are lower than 50 when δ = 3. From Figures 4 and 5, the conclusion
can be drawn that the joint chart can perform well under most of the processes. Regardless of small mean shifts or large
mean shifts, the joint chart shows a significant improvement over the individual chart, including the output chart and
the input chart. In particular, whether or not monitoring the process output or the control action, the joint chart will be
always a good choice for a complicated disturbance process.

5. Case studies

5.1 Case study I

As revealed in Figure 6, an example with real data from the manufacturing process of the inner diameter U220:030 of a
valve shell is used to illustrate the proposed joint monitoring chart. The machining process is implemented using a com-
puter numerical control (CNC) machining centre (CTX420). Figure 7 shows the machining process of the valve shell.

The GARCH toolbox of MATLAB is adopted to model the AR(p) process of the real cases. The model construction
method is described as follows. Firstly, the ‘garchset’ function, based on the model selection criteria, namely Akaike
information criterion (Shumway and Stoffer 2010, 213) is used to fit the best and the order p. Secondly, the ‘garchfit’
function, based on maximum likelihood estimate, is used to accurately estimate the parameters of the AR(p) model. This
model construction method is also applied to the rest of case studies.

After a long-time data collection and fitting their time series model, an AR(6) model is appropriate, which can be
written as:

Dt ¼ 0:0475Dt�1 � 0:0178Dt�2 þ 0:0714Dt�3 � 0:0528Dt�4 � 0:0141Dt�5 þ 0:0619Dt�6 þ at (27)

where r̂2a ¼ 3:472 and r̂2D ¼ 3:512.
By means of an investigation of the machining centre, a manipulated variable Xt (the cutting speed of CNC) is avail-

able for adjusting the process and Xt immediately has its full effect on Yt+1. To reduce the process variability, the MMSE
controller can be designed as:

Xt ¼ 0:0475Xt�1 � 0:0178Xt�2 þ 0:0714Xt�3 � 0:0528Xt�4 � 0:0141Xt�5 þ 0:0619Xt�6 � 0:0475et þ 0:0178et�1

� 0:0714et�2 þ 0:0528et�3 þ 0:0141et�4 � 0:0619et�5 (28)

where r̂2X ¼ 0:422.

Table 1. (Continued).

ARL

(φ1, φ2) δ Output Input Joint Tsung’s

(–0.1, 0.06) L = 3.357 L = 3.206
0 370.40 370.40 369.88 738.35
0.5 147.36 327.21 175.20 269.27
1 39.91 241.10 53.15 66.34
3 1.85 35.46 2.01 2.16
5 1.02 3.64 1.05 1.04
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Table 2. ARL comparisons of output, input and joint charts (φ1 > 0).

ARL

(φ1, φ2) δ Output Input Joint Tsung’s

(0.1, 0.06) L = 3.358 L = 3.206
0 370.40 370.40 370.65 729.46
0.5 190.06 104.96 140.09 211.13
1 64.10 25.05 33.53 43.75
3 2.48 2.89 2.07 2.26
5 1.02 2.15 1.05 1.04

(0.1, 0.30) L = 3.359 L = 3.206
0 370.40 370.40 370.16 730.95
0.5 252.08 129.14 175.61 265.28
1 116.82 32.49 53.17 66.14
3 4.18 3.47 2.64 3.09
5 1.03 2.94 1.06 1.04

(0.1, 0.56) L = 3.343 L = 3.206
0 370.40 370.40 369.73 733.65
0.5 321.75 174.64 248.86 416.95
1 223.83 58.78 110.99 140.40
3 14.44 4.58 5.31 7.09
5 1.04 3.05 1.07 1.09

(0.4, −0.04) L = 3.341 L = 3.206
0 370.40 370.40 369.25 739.36
0.5 241.54 183.70 209.30 354.38
1 106.47 62.13 73.21 109.35
3 4.66 3.58 3.09 4.01
5 1.04 2.05 1.06 1.07

(0.6, 0.16) L = 3.331 L = 3.206
0 370.40 370.40 369.11 736.76
0.5 344.36 217.24 295.04 648.49
1 280.77 89.29 172.54 277.26
3 43.77 6.36 13.21 19.09
5 1.56 2.85 1.25 2.47

(0.7, 0.08) L = 3.330 L = 3.206
0 370.40 370.40 369.06 741.27
0.5 348.15 232.75 302.81 678.94
1 291.76 98.79 191.26 317.46
3 51.77 7.74 16.89 25.12
5 1.76 2.65 1.33 3.01

(0.9, −0.20) L = 3.339 L = 3.206
0 370.40 370.40 369.05 744.44
0.5 332.02 254.35 300.04 568.46
1 248.65 121.38 181.59 268.36
3 29.30 8.37 13.68 19.73
5 1.36 2.42 1.27 1.91

(1.0, −0.16) L = 3.330 L = 3.206
0 370.40 370.40 369.86 735.99
0.5 357.76 287.25 330.87 705.91
1 322.09 159.07 253.02 490.84
3 82.99 17.03 35.20 61.15
5 2.65 4.17 1.82 5.76

(1.1, −0.24) L = 3.330 L = 3.206
0 370.40 370.40 370.63 741.37
0.5 360.33 299.16 340.82 724.34
1 330.86 186.39 272.04 586.31
3 96.31 21.27 45.04 86.36
5 3.11 5.60 2.14 6.78

(1.6, −0.64) L = 3.310 L = 3.206
0 370.40 370.40 370.71 742.07
0.5 367.83 358.63 366.57 731.20

(Continued)
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To illustrate the monitoring performance, 30 observations for a bulk-production, under a normal in-control process,
are chosen to artificially add a mean shift of μ = 2 ⋅ σe at instant t = 0 as a special cause of the process by manipulated
variables. For better revealing differences between our joint chart and the joint chart based on Bonferroni’s approach
developed by Tsung, Shi, and Wu (1999), the two joint charts are compared with each other. Figures 7 and 8 show their
monitoring information, respectively. Because α = 0.27%, the in-control radius L is 3.405 in our joint chart in Figure 8,
and the coefficient of the control limits Le ¼ LX ¼ Zð1�a=4Þ ¼ 3:206 using Bonferroni’s approach in Figure 9.

According to the developed first and second out-of-control rules, Figure 8 shows that there are no sequential eight
plotted points from observation 1 to 30, which locate in the same quadrant, and that our joint chart signals the μ = 2 ⋅
σe mean shift at observation 21. Figure 9 shows that joint chart by Tsung, Shi, and Wu (1999) also signals at observa-
tion 21. The monitoring information indicates that our joint chart is comparable with Tsung, Shi, and Wu’s (1999) joint

Table 2. (Continued).

ARL

(φ1, φ2) δ Output Input Joint Tsung’s

1 358.10 323.44 352.34 716.14
3 154.46 162.15 157.39 366.78
5 4.53 73.58 5.68 14.75

Figure 2. ARL of the output chart when δ = 1 (phi1\0).

Figure 3. ARL of the input chart when δ = 1 (phi1 > 0).
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chart and that our joint chart can efficiently signal the out-of-control information. At last, it is important to note that
since the MMSE controller needs to compensate for the mean shift, there are some adjustments to manipulated inputs in
both joint charts.

Figure 4. ARL of the joint chart when δ = 1.

Figure 5. ARL of the joint chart when δ = 3.

Figure 6. A valve shell.
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Figure 7. Workpiece machining process.

Figure 8. Our joint chart under an AR(6) process.

Figure 9. Tsung, Shi, and Wu’s (1999) joint chart under an AR(6) process.
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5.2 Case study II

The second example is a production processing of a tension spring in a steel wire ringer. An AR(5) disturbance model
is adequate for its quality characteristic in terms of tensile stress, that is:

Dt ¼ 0:2977Dt�1 þ 0:0056Dt�2 þ 0:2969Dt�3 � 0:2286Dt�4 þ 0:1717Dt�5 þ at (29)

where r̂2a ¼ 1:212 and r̂2D ¼ 1:372.
Similarly, detailed procedures are consistent with the first example. Figures 10 and 11 show the monitoring informa-

tion of our joint chart and Tsung, Shi, and Wu’s (1999) joint chart, respectively. The two charts all signal the mean shift
at observations 3, which again demonstrates that our joint chart is not inferior to Tsung, Shi, and Wu’s (1999) joint
chart.

Figure 10. Our joint chart under an AR(5) process.

Figure 11. Tsung, Shi, and Wu’s (1999) joint chart under an AR(5) process.
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5.3 Case study III

The last example is taken from Pandit and Wu’s (1983, 398) textbook, which lists 160 observations of a gate-opening
regulation in a paper-making process. The first 100 normal observations are used to fit its time series model. The last
30 observations, having a small mean shift, are used to test the joint chart. The following AR(4) model is appropriate
for this data:

Dt ¼ 0:8106Dt�1 � 0:1289Dt�2 þ 0:0664Dt�3 � 0:0504Dt�4 þ at (30)

where r̂2a ¼ 0:3512 and r̂2D ¼ 0:5222.
Assume a control action Xt can be found out to adjust the gate opening in the paper-making process. Then, the

MMSE controller can be designed as:

Xt ¼ 0:8106Xt�1 � 0:1289Xt�2 þ 0:0664Xt�3 � 0:0504Xt�4 � 0:8106et þ 0:1289et�1 � 0:0664et�2 þ 0:0504et�3 (31)

where r̂2X ¼ 0:3862.

Figure 12. Our joint chart under an AR(4) process.

Figure 13. Tsung, Shi, and Wu’s (1999) joint chart under an AR(4) process.
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Under the condition that α = 0.27% the in-control radius L is 3.339 and our joint chart is shown in Figure 12. Our
joint chart signals a mean shift at observation 138, because eight sequential plotted points locate in the fourth quadrant.
However, Tsung, Shi, and Wu’s (1999) joint chart does not give an out-of-control signal until observation 140 in
Figure 13. Our joint chart has been shown to possess better monitoring performances than Tsung, Shi, and Wu’s (1999)
joint chart in monitoring smaller mean shifts in this case.

6. Conclusions

A new joint monitoring scheme is presented for processes with arbitrary order AR(p) disturbance to simultaneously
monitor the control action and the process output. The ARLs of the proposed joint chart, which can be applied to moni-
tor any stationary high-order disturbance process, have been compared with the individual input and output chart, and
Tsung, Shi, and Wu’s (1999) joint chart using Bonferroni’s approach. Overall, the joint chart can significantly improve
the individual monitoring performance. When small mean shifts occur, our joint chart outperforms Tsung, Shi, and Wu’s
(1999) joint chart for processes with AR(2) disturbance.

It is worth noting that the out-of-control rule that some sequential points are inside the control limits but locate in
the same quadrant can improve the monitoring performance of the joint chart to some extent and can be further devel-
oped to other non-random pattern of behaviour of those plotted points in future work.
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