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In spite of the success of state space modeling approach to describe variation propagation for multistage
milling processes (MMPs), the current models cannot be directly applied into variation propagation
analysis for multistage turning processes (MTPs) due to the differences of the locating datum schemes.
MTPs are widely adopted in manufacturing industry for fabricating rotary workpieces. In this paper, a
generic framework for three-dimensional variation propagation modeling for MTPs of rotary workpieces
based on differential motion vectors (DMVs) is developed. The explicit three-dimensional datum error
and fixture error expressions are derived. By a series of homogeneous transformations of different error
sources, a three-dimensional variation propagation model for MTPs is built, in which the datum error,
fixture error and so on are described and transmitted in six degrees of freedom. The effectiveness of
the proposed model is validated by an example of MTPs of valve shell.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to reduce process variation for quality improvement
in manufacturing process plays an essential role in the success of a
manufacturing enterprise in today’s globally competitive market-
place (Du, Xi, Ni, Pan, & Liu, 2008). Though statistical process
control (SPC) technique has been widely used for monitoring
process variation in many applications (Du, Huang, & Lv, 2013;
Du & Lv, 2013; Du, Lv, & Xi, 2012), it could not be used as a tool
for analysis of variation propagation in manufacturing process.
The forming of complex workpieces involves a large number of
machining stages. As workpieces move through these stages, the
variations of the characteristics are introduced. If characteristics
machined in upstream stages are used as datum in downstream
stages, the variations will be transmitted to newly generated
characteristics and accumulated to the final products. Therefore,
the variations can be attributed to two categories: variations gen-
erated at the current stage, as well as the variations accumulated
from previous stages. The variations of the final product are the
accumulation of variations from all stages.

Variation propagation modeling and monitoring for multistage
processes has received intensive investigation in the recent decades
(Bai & Yun, 1996; Shetwan, Vilentin, & Tjahjono, 2011; Shi, 2006).
The engineering model directly linking engineering knowledge of
the process variation sources with key product characteristic
(KPC) measurements has received great attention. Among all the
engineering models, the state-space based model is an effective
model, which can be generally divided into two categories,
multistage assembly process (MAP) model and multistage milling
process (MMP) model. The state space model for variation propaga-
tion was first proposed for two-dimensional assembly processes
(Jin & Shi, 1999; Mantripragada & Whitney, 1999) and was further
investigated and applied in three-dimensional assembly processes
(Camelio, Hu, & Ceglarek, 2004; Ding, Ceglarek, & Shi, 2002). In
assembly processes, the fixture re-orientation errors, workpiece
fabrication errors, workpiece joint errors (such as lap-, butt-,
mixed-joint errors) mainly cause the dimension variation propaga-
tion; while in machining process, locating datum errors and fixture
errors couple together to make variation propagation quite compli-
cate and are the main reasons why the variation propagates.

For MMP, some authors (Djurdjanovic & Ni, 2001; Huang & Shi,
2004a,b) investigated the three dimensional variation propagation
at the systemic level by applying the state space model. Huang, Shi,
and Yuan (2003) generalized the variation propagation model with
an approximate linearization strategy. Zhou, Huang, and Shi (2003)
developed a variation propagation model and derived explicit
expression for datum error and fixture error. Huang and Shi
(2004a,b) extended the state space modeling approach from single
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Nomenclature

Notation
RCS reference coordinate system
MCS machine coordinate system
FCSn0FCS actual (nominal) fixture coordinate system
LCSn nth local coordinate system
RCS(k) RCS at stage k, always abbreviated as R(k) or R
FCS(k) FCS at stage k, always abbreviated as F(k) or F
HTM homogeneous transformation matrix

HR
n (0HR

n) actual (nominal) HTM from LCSn to RCS

RR
n rotaional component in HTM form LCSn to RCS

tR
n (0tR

n) the coordinate value of the origin of LCSn with respect to
RCS, tR

nx; t
R
ny; t

R
nz are the three elements of tR

n

t̂R
n Skew symmetric matrix composed by the three

elements of tR
n , similar to RR

n

QR
n coupling matrix computed by RR

n and t̂R
n

nR
n; o

R
n; a

R
n the column vector RR

n

DR
n (�DR

n) differential transmission matrix from LCSn to RCS, and
its inverse matrix

ĥR
n skew symmetric matrix of DR

n composed by its three
angular components

hR
n a vector composed by the three angular components of

ĥR
n , that is ðhR

nx; h
R
ny; h

R
nzÞ

T

dR
n a vector composed by the three positional components

of DR
n ,that is ðdR

nx; d
R
ny; d

R
nzÞ

pF
i the coordinate value of point i with respect to coordi-

nate system F
pF

xpF
ypF

z three component of pF
i

xB
A the differential motion vector, representing the devia-

tion of characteristic A w.r.t coordinate system B.
xRðkÞ

i the deviation of the ith characteristic w.r.t. R(k)

X0ðkÞ deviation of all characteristics at stage k after relocation

XnewðkÞ stage error propagated at stage k
XðkÞ deviation of all characteristics after the processing of

stage k
lðkÞ number of characteristics manufactured at stage k
iðkÞ the ith characteristic manufactured at stage k
uf ðkÞ;utðkÞ fixture error and tool error
usðkÞ stage error coupled by the tool error and fixture error
uðkÞ the variation input of stage k, composed by uf(k) and

ut(k)
wðkÞ system noises, includes the variation introduced by

unconsidered variation sources
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process route to a serial-parallel hybrid MMP with multiple routes.
Loose, Zhou, and Ceglarek (2007) developed a variation propaga-
tion model for general fixture setup schemes. Loose, Zhou, Zhou,
and Ceglarek (2010) integrated geometric dimensioning and
tolerancing (GD&T) into dimensional variation models for MMP.
Cao, Subramaniam, and Chen (2012) proposed a performance
evaluation and enhancement method of MMPs with rework loops.
Abellan-Nebot, Liu, Subirón, and Shi (2012) extended the state
space model for MMP considering the machining-induced error.
Detailed descriptions of existing research work on variation
propagation modeling and applications were provided in a mono-
graph (Shi, 2006) and a survey (Shi & Zhou, 2009).

However, the current state space models only investigate
variation propagation for MMPs for fabricating cubic workpieces.
Due to the difference of the variation propagation principle
existing between in MMPs for fabricating cubic workpieces and
in multistage turning processes (MTPs) for fabricating rotary
workpieces, these models for MMPs cannot be directly applicable
to MTPs (Du, Yao, & Huang, 2015). Fig. 1 shows the difference
of the locating scheme between MMP and MTP. The left part of
Fig. 1 shows the locating scheme of a typical cubic workpieces,
the locating scheme of engine cylinder head; while the right part
of Fig. 1 shows the locating scheme of a rotary workpiece.

MTPs are widely adopted in manufacturing industry for fabri-
cating rotary workpieces. Due to the differences of reasons causing
variation propagation and limited research, it is desirable to
analyze and model the variation propagation for MTPs. Therefore,
the purpose of this paper is to present a generic framework for
three-dimensional variation propagation modeling for MTPs of
rotary workpieces by developing the explicit three-dimensional
expressions of datum error and fixture error.

The remainder of this paper is organized as follows: Section 2
derives the mathematic representations of datum error, fixture
error and machining error. Section 3 presents the variation cou-
pling analysis procedure. A generic variation propagation modeling
framework for MTPs is developed in Section 4. The model is
validated by the turning process of a valve shell in Section 5.
Finally, the conclusions are given in Section 6.
2. Workpiece random geometric error representation

2.1. Coordinate system definition

Before deriving the expression of variations, four types of coor-
dinate systems are defined as follows:

1. The reference coordinate system (RCS) is rigidly associated with
an individual workpiece and it is used to represent the location
and orientation of the workpiece, also called workpiece coordi-
nate system.

2. The fixture coordinate system (FCS) defines the actual fixture
setup that locates the workpiece and it is determined by the
actual position of locators.

3. The nominal fixture coordinate system (0FCS) defines the nom-
inal fixture setup, and it is determined by the nominal position
of each locators. The notion with left superscript 0 is used to
describe the nominal condition. Since the 0FCS is fixed on the
machine, it can also be considered as the machine coordinate
system (MCS).

4. The local coordinate system (LCS), which is fixed with charac-
teristics on workpieces, represents the actual location and
orientation of characteristics of the workpiece.

2.2. Error definition

Four types of errors are derived from the relationships of the
aforementioned coordinate systems and are listed as follows.

1. Tool error is the deviation of the LCS with respect to 0FCS.
2. The fixture error is the deviation of the actual FCS with respect

to the nominal 0FCS.
3. The datum error is the positional and angular inconformity of

the actual RCS with respect to FCS, which is usually caused by
the inaccurate positioning datum.

4. The overall characteristic error is the deviation of LCS with
respect to RCS, representing the overall position and orientation
deviation of characteristics of a workpiece.



Fig. 1. Difference of locating scheme between MMP and MTP.
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All the coordinate systems and their relationships are illus-
trated as Fig. 2.
2.3. Characteristic and variation representation

A characteristic of a workpiece is depicted by its location, orien-
tation and size. In this paper, differential motion vectors (DMV) is
adopted as state vector to represent the location and orientation
variations of a characteristic. According to Section 2.1, the relation-
ship between the FCS and RCS can be used to illustrate the location
and orientation of a characteristic of workpiece. In Fig. 3, a cylinder
characteristic is shown, and its location is represented by the
location of a specific point Oi, the orientation of the characteristic
is depicted by the rotational degree between coordinate Xi|XR, Yi|YR

and Zi|ZR, and its size is represented by the diameter and depth of
the cylinder. The characteristic is represented by its location and
orientation: (xi, yi, zi, a, b, c), where (xi, yi, zi) are the location of
point T in ORXRYRZR, and (a, b, c) is the rotational degree of trans-
forming coordinate system OiXiYiZi to coordinate system ORXRYRZR.

The vectorial dimensioning tolerancing (VD&T) representation
is the aggregation of the position and orientation information of
a characteristic (Loose et al., 2010). It contains the characteristic’s
six degree of freedoms. The variation of a characteristic in the
turning process is reflected by its changes of location and orienta-
tion in six degree of freedoms and noted as:



Fig. 2. Illustration of coordinate system and error.
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Fig. 4. Illustration of rotation matrix.
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xB
A ¼ dB

A

� �T
hB

A

� �T
� �T

q ð1Þ

where dB
A ¼ dB

Ax dB
Ay dB

Az

h iT
is the positional error, and hB

A ¼

hB
Ax hB

Ay hB
Az

h iT
is rotational error.

3. Variation coupling analysis

The DMV cannot be directly applied to basic arithmetic opera-
tions such as addition and subtraction, because of the Euler angles
it contains. In order to conduct variation coupling analysis, a new
set of rule is established for DMV calculation in this section.

3.1. Rotation and translation matrix

Before introducing the transformation matrix, two components
of the transformation matrix are firstly introduced as follows:

3.1.1. Rotation matrix
Note Rot(k, h) as the rotation matrix for the operation of rotating

an object around axis k for a degree h. Assume that a point has a
coordinate (x, y, z) in the original coordinate system (representing
the position and orientation of the object before rotation), and
has a coordinate (x0, y0, z0) in the new coordinate system (represent-
ing the position and orientation of the object after rotation), and
then the coordinate rotation is shown as Fig. 4.

A relationship between the two coordinate values is established
as: (x, y, z, 1)T = Rot(k, h)(x0, y0, z0, 1)T, and the forth element ‘1’ is
added for the calculation uniformity of matrix operation. If there
is a coordinate system rotates around axis X with an degree a, a
point p has coordinate value (x, y, z) in the original coordinate
system, and a coordinate (x0, y0, z0) in the new coordinate system,
then the following two equations hold.

y ¼ y0 cos a� z0 sin a; z ¼ y0 sin aþ z0 cos a ð2Þ

Written in matrix form, Eq. (2) turns into

x
y

z

1

2
6664

3
7775 ¼

1 0 0 0
0 cos a � sin a 0
0 sina cos a 0
0 0 0 1

2
6664

3
7775

x0

y0

z0

1

2
6664

3
7775 ð3Þ

Noted as : ½M� ¼ RotðX;aÞ½M0� ð4Þ
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3.1.2. Translation matrix
Note Trans(x, y, z) as the translation matrix for the operation of

translating an object with an offset (tx, ty, tz) along the axes
X n Y n Z. A point p has coordinate value (x, y, z) in the original
coordinate system, and a coordinate (x0, y0, z0) in the new
coordinate system, Then a relationship between the two coordi-
nate values are established as: (x, y, z, 1)T = Trans(tx, ty, tz)
(x0, y0, z0, 1)T, the forth element ‘1’ is added for the calculation
uniformity of matrix operation. It is easy to know that the transla-
tion matrix takes the form as:

Transðtx; ty; tzÞ ¼

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

2
6664

3
7775 ð5Þ
3.2. Transformation matrix

The movement of an object involves translation and rotation of
that object, and the corresponding transformation matrix for the
movement of an object can be represented through the translation
and rotation matrix. Note HR

i as the transformation matrix for the
operation of moving an object. A point p has coordinate value
(x, y, z) in the original coordinate system, and a coordinate (x0, y0, z0)
in the new coordinate system, Then a relationship between the two
coordinate values are: ðx; y; z;1ÞT ¼ HR

i ðx0; y0; z0;1Þ
T .

The movement of a rigid object can be decomposed into a
sequence of rotation and movement. For instance, first rotate
around X for a degree a, round Y for b and Z for c, and then translate
with an offset (tx, ty, tz). The corresponding transformation matrix
is formulated as:

HR
i ¼ Transðtx; ty; tzÞ � Rotðz; cÞ � Rotðy; bÞ � Rotðx;aÞ ð6Þ

where Rot(x, a) and Trans(tx, ty, tz) are listed in Eqs. (4) and (5),
Rot(y, b), Rot(z, c) and HR

i are:

Rotðy;bÞ¼

cosb 0 sinb 0
0 1 0 0

�sinb 0 cosb 0
0 0 0 1

2
6664

3
7775;Rotðz;cÞ¼

cosc �sinc 0 0
sinc cosc 0 0

0 0 1 0
0 0 0 1

2
6664

3
7775

ð7Þ

HR
i ¼

cosbcosc sinasinbcosc�cosasinc cosasinbcoscþsinasinc tx

cosbsinc sinasinbsincþcosacosc cosasinbsinc� sinacosc ty

�sinb sinacosb cosacosb tz

0 0 0 1

2
6664

3
7775

ð8Þ
3.3. Variation coupling

A new set of calculation principle is developed to analyze the
relationship between different sources of variation and their cou-
pling effect in this subsection. The homogenous transformation
matrix (HTM) for the coordinate system transformation is used
to represent the coordinate system transform. Note HR

i as the
HTM from the actual position and orientation of the ith character-
istic, 0HR

i as the HTM from the nominal position and orientation of
the ith characteristic, and the adjustment of the HTM is noted as
dHR

i . The HTM between the RCS and actual LCSi is regarded as a
two step transformation: (i). from the actual LCSi to 0LCSi, and
(ii). from 0LCSi to RCS:

HR
i ¼ 0HR

i � dHR
i ð9Þ
where dHR
i ¼

1 �hR
iz hR

iy dR
ix

hR
iz 1 �hB

ix dR
iy

�hR
iy hR

ix 1 dR
iz

0 0 0 1

2
6664

3
7775 ¼ I4�4 þ DR

i ; DR
i ¼

0 �hR
iz hR

iy dR
ix

hR
iz 0 �hB

ix dR
iy

�hR
iy hR

ix 0 dR
iz

0 0 0 0

2
6664

3
7775 is the differential transformation

matrix (DTM) associating to the DMV xR
i ; xR

i ¼ dR
i

� �T
hR

i

� �T
� �T

.

Define the function f ðxR
i Þ ! DR

i as the relationship between the

elements of the DMV and the DTM. Thus:

HR
i ¼ 0HR

i � dHR
i ¼ 0HR

i � I4�4 þ DR
i

� �
¼ 0HR

i þ 0HR
i � D

R
i ð10Þ

Assume there are two characteristics on the rotary workpiece,
noted as LCSi, i = 1, 2, and the HTM from LCS1 to RCS, and form
LCS2 to LCS1 are known, then

HR
1 ¼ 0HR

1 þ 0HR
1 � D

R
1; and H1

2 ¼ 0H1
2 þ 0H1

2 � D
1
2 ð11Þ

and,

HR
2 ¼ HR

1 � H
1
2 ¼ 0HR

1 þ 0HR
1 � D

R
1

� �
� 0H1

2 þ 0H1
2 � D

1
2

� �
ð12Þ

Extend HR
2, and neglect the second-order small values, and Eq.

(13) can be obtained.

HR
2 ¼ 0HR

2 I þ 0H1
2

� ��1
� DR

1 � 0H1
2 þ D1

2

� 	
ð13Þ

Since

HR
2 ¼ 0HR

2 I þ DR
2

� �
ð14Þ

Combining Eqs. (13) and (14),

DR
2 ¼ 0H1

2

� ��1
� DR

1 � 0H1
2 þ D1

2 ð15Þ

According to the work of Craig (2004), 0H1
2

� ��1
� DR

1 � 0H1
2 ¼ TDR

1,

where TDR
1 ¼ f

0R1
2

� �T
� 0R1

2

� �T
�0 t̂1

2

0 0R1
2

� �T

2
64

3
75xR

1

0
B@

1
CA, that is DR

2 ¼ TDR
1 þ D1

2.

DR
2 ¼ TDR

1 þ D1
2 is written as:

f xR
2

� �
¼ f

0R1
2

� �T
� 0R1

2

� �T
� 0 t̂1

2

0 0R1
2

� �T

2
64

3
75xR

1

0
B@

1
CAþ f x1

2

� �
ð16Þ

Thus, according to the one-by-one mapping, Eq. (16) is rewritten
as:

xR
2 ¼ Q 1

2xR
1 þ x1

2 ð17Þ

where Q1
2 ¼

0R1
2

� �T
� 0R1

2

� �T
� 0 t̂1

2

0 0R1
2

� �T

2
64

3
75.

It is easy to know that the 0FCS and MCS are positional and ori-
entational fixed to each other, thus there is a nominal HTM
between the two coordinate systems, and 0FCS is used to replace
MCS to simplify the computation for this fixed relationship. The



Fig. 7. Dimensional error computation procedure.

Fig. 5. Differential motion representation of variation accumulation of rotary workpiece.

Fig. 6. Variation propagation of MTP.
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fixture imperfection leads to the misalignment between 0FCS and
FCS, noted as x0FCS

FCS .
If the flawed characteristics machined at previous stages are

used as the datum characteristic, then the misalignment between
the datum characteristic and the fixture (datum error) is intro-

duced to the process, noted as xRCS
FCS , shorted as xRðkÞ

F at stage k.
Since the characteristic machined are directly formed by the

tool path, which is often programmed according to 0FCS. The
imperfection of the machined characteristic at current stage is
illustrated by the actual path, thus the tool error is viewed as the
deviation of the actual tool path from its programmed path, noted
as x0F

iðkÞ, where i(k) is the ith characteristic machined at stage k.
The characteristic error is also affected by the flawed fixture

setup, thus the characteristic error contributed by the current stage
is a mixed effect of tool error and fixture error. According to Eq.
(17), the characteristic error contributed by the current stage is:



 Chuck
Balance Mass

Pressure plate

V

ULCS1

LCS2

0RCS
RCS

Fig. 8. Effects illustration of Datum error in rotary workpieces turning process.
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xFðkÞ
iðkÞ ¼ Q

0FðkÞ
iðkÞ � x

FðkÞ
0FðkÞ þ x

0FðkÞ
iðkÞ ð18Þ

Since the sources for the characteristic error can be generally clas-
sified into two categories: one from the current stage, and the other
from the upstages (the flawed datum), the characteristic error is

also contributed by the datum error xRðkÞ
F . The mixed effects of the

two sources is depicted by Eq. (17),

xRðkÞ
iðkÞ ¼ Q FðkÞ

iðkÞ xRðkÞ
F þ xFðkÞ

iðkÞ ð19Þ

The aforementioned relationships between different coordinate
systems and the corresponding DMVs can be summarized by Fig. 5.
The basic logic of Fig. 5 is that each kind of error can be represented
by a nominal HTM and a DMV (with the same color). Take the fix-
ture error for example. It is the deviation of MCS w.r.t. FCS as
depicted in Fig. 2, which can be analyzed by further decomposing
into two steps: (1) the nominal HTM from MCS to 0FCS, and (2)
the corresponding DMV xM

F (Note that xM
F and x0FCS

F are interchange-
able through the nominal HTM from MCS to 0FCS. We used the

notation xM
F instead of x

0FCS
F here for two reasons. One is to help

to keep the consistency of the paper. The DMVs are evaluated in
the real coordinate system instead of the nominal coordinate
system. The other reason is that it helps to differentiate the DMVs
based on different coordinate system, such as xFCS

LCSd
and xRCS

LCSd
in

Fig. 5. Both of the two steps are noted with bold black lines.
Another example is also give for illustrating the tool error, which
is noted with the light pink lines at the bottom of Fig. 5. The tool
error can be deduced through (1) the HTM from MCS to 0LCSi,

and (2) from 0LCSi to 0LCSi which is the DMV xM
LCSi

� �
.

4. Derivation of the state space model for MTPs

4.1. Framework

There are two major types of variations at stage k for MTP with
N stages (see Fig. 6): (i) the variations induced by previous stages
through the flawed datum characteristics; (ii) the variations
induced by current stage, including fixture error, tool error, etc.

The stage-wise variation accumulation property leads to the
adoption of state space model, and the variation accumulation
for MTP is represented:
xðkÞ ¼ AðkÞxðk� 1Þ þ BðkÞuðkÞ þ vðkÞ
yðkÞ ¼ CðkÞxðkÞ þwðkÞ

ð20Þ

where k is the stage index, xðkÞ is the product variation and yðkÞ is
the corresponding measurement with respect to xðkÞ, uðkÞ is the
error caused by local stage, which contains two parts: the tool error
and the fixture error in this paper, AðkÞ is the dynamic matrix
representing the re-locate at the local stage, BðkÞ is the variation
transformation matrix introduced by the local operation, CðkÞ is
the observation matrix, and vðkÞ and wðkÞ are the model noises.

The whole computing procedure is illustrated in Fig. 7. From the
beginning of each stage in MTPs, the rotary workpiece is relocated
from stage k � 1 and then fixed at stage k, introducing the change
of RCS from R(k � 1) to R(k) (see S1). Generally, the error raised
from the fixturing process consists of two parts: (i) the datum error
resulted from the locating datum (see S2), which is contributed by
previous stages; (ii) the fixture error from the flawed fixture and
worn locator (see S3). Since the turning process is performed on
the flawed fixturing and positioning condition, the variation is
affected by two type of errors (see S4 and S5). The variation of
the workpiece characteristic is a comprehensive result of the
previous stages and stage k (see S6). Finally, the state space model
is built (S7).

4.2. Derivation of model

4.2.1. S1: Relocation error analysis
When a workpiece moves from stage k � 1 to stage k, the RCS is

also changed from R(k � 1) to R(k), and the variation of character-
istics is also changed due to RCS change. If the HTM from R(k) to
each FCS is known, then according to Eq. (17), the DMV of a
characteristic’s variation under coordinate system R(k) is:

xRðkÞ
i ¼ xRðk�1Þ

i � QRðkÞ
i � xRðk�1Þ

R ð21Þ

Note x1(k) as the state vector representing the variation of all char-

acteristics; it is a stack of the DMV, xRðkÞ
i of each characteristic at the

beginning of stage k. Also note x(k � 1) as a stack of xRðk�1Þ
i after all

the operations at stage k � 1. If there are M characteristics needs to
be machined, then,

x1ðkÞ ¼ A1ðkÞxðk� 1Þ ð22Þ
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chuck fixturing scheme in MTP.
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where x1ðkÞ ¼

xRðkÞ
1

..

.

xRðkÞ
i

..

.

xRðkÞ
R

..
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.

If the RCS is not changed when relocating a workpiece from
stage k - 1 to stage k, then x1(k) = x(k � 1).

4.2.2. S2: Datum error analysis
Datum error is caused by the flawed datum characteristic pro-

cessed by previous stages, resulting in the deviation of the RCS
with respect to FCS. For example, coaxiality variation is incurred
in the presence of datum error in turning process (see Fig. 8). There
is a datum error: the upper line is the nominal position of the
datum characteristic, while the lower line is the actual datum
characteristic position.

This paper analyzes the datum error in the four-jaw chuck fix-
turing scheme, one major fixturing strategy in turning process.
As shown in Fig. 9(a), a 4-jaws chuck clamping has a FCS with Z
axis perpendicular to the turning axis, Y axis along with the turning
axis; and the X axis is perpendicular to the plane of YFOFZF. Fig. 9(b)
shows that the jaws limit the movement along X n Z-axis, and the
rotation round X n Z-axis; the end of the jaw limits the movements
along the Y-axis; with enough clamping force, the rotation round
Y-axis is also limited. Under such condition a virtual locator is
placed on the tangent plane where locator L1 and L2, the plane
constrains the rotational motion round Y-axis. Thus locators
L1 � L6 constrain all six degree of freedom of the workpiece.

The plane consisting of locator L1 � L3 is the primary datum
plane (noted as O1X1Y1Z1,), which constrains one translational
motion and two rotational motion. The secondary datum charac-
teristic plane is the tangential plane locator L4 and L5 are placed
(noted as O2X2Y2Z2), and the tertiary datum plane is the end plane
containing locator L6 (noted as O3X3Y3Z3).

The datum error induced by the flawed datum at stage k is seen

as the discrepancy between the R(k) and FCS(k), noted as xRðkÞ
FCSðkÞ. The

Fig. 9. Illustration of 4-jaws
primary datum deviation with respect to R(k) is noted as xRðkÞ
1 , and

the second datum deviation with respect to R(k) is noted as xRðkÞ
2 ,

the tertiary datum deviation with respect to R(k) is noted as xRðkÞ
3 .

Accordingly, xRðkÞ
FCSðkÞ is expressed in the linear combination of xRðkÞ

1 ,

xRðkÞ
2 and xRðkÞ

3 . Let T1(k), T2(k) and T3(k) be the coefficient matrices,

and xRðkÞ
FCSðkÞ is expressed as:

xRðkÞ
FCSðkÞ ¼ T1ðkÞxRðkÞ

1 þ T2ðkÞxRðkÞ
2 þ T3ðkÞxRðkÞ

3 ð23Þ

p1 � p6 are the points on the workpiece that directly touching the
six locators, L1 � L6, on the fixture, with coordinate value pF

1 � pF
6

with respect to FCS respectively. Under the direct touching condi-
tion, the Z value of each locator is zero. That is:
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Take p1 for example, given that H1
R ¼ ð�DR

1 þ IÞ � 0H1
R and

HR
F ¼ 0HR

F � ðD
R
F þ IÞ (Paul, 1981)
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Under nominal fixture locating condition, ½0H1
F � ~pF

1�3 ¼ 0,
Eq. (25) is rewritten as:
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Note DR
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sides of Eq. (25) is converted to:
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By applying the same procedure from Eqs. (25)–(27), the latter five
equations in equation set (24) for the touching condition of p2 � p6

can be obtained,
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ð28Þ

The computation of Eq. (28) is simplified by the orthogonality of
O1X1Y1Z1, O2X2Y2Z2 and O3X3Y3Z3. Given the nominal position of the
three datum characteristics and the position of the six locators
with respect to FCS as:
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where r is the radius of the rotary workpiece.
The equation set (28) is simplified to Eq. (29).
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There are six variables and six equations in equation set (29),
thus the equation set (29) can be solved by arranging the result
in the form of Eq. (23). Then T1, T2 and T3 is obtained:
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Hence, the datum error occurred at stage k is:

XRðkÞ
FCSðkÞ ¼ A2ðkÞX1ðkÞ ð30Þ

where A2(k) = [0� � �T1(k)� � �T2(k)� � �T3(k)� � �0]6�6M
4.2.3. S3: Fixture error analysis
Fixture error is the actual positional and orientational deviation

of FCS with respect to 0FCS. If fixture error exits in the machining
process, the coaxiality error is also introduced. As shown in
Fig. 10, once a flawed fixture error exists, the coaxiality error of
the machined characteristic is thus incurred.

As shown in Fig. 9(b), a workpiece is located by six locators,
L1 � L6. The error of L1 � L6 is represented by uf(k) = [DL1z, DL2z,
DL3z, DL4z, DL5z, DL6z]T. The fixture error is obtained according to
the work of Cai, Hu, and Yuan (1997):

xFCSðkÞ
0FCSðkÞ ¼ A3ðkÞuf ðkÞ ¼ �T4ðkÞuf ðkÞ ð31Þ
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4.2.4. S4: Turning tool error analysis
Since the tool path is programmed in 0FCS, the tool error is also

seen as the deviation of the actual cutting tool path from the
programmed (nominal) tool path in 0FCS. The tool error of one
characteristic machined at stage k is:

x
0FCS
iðkÞ ¼ ½Dx;Dy;Dz;Dw;Dh;Du� ð32Þ

In Fig. 11, the tool is programmed with a path M0 ?
0M1, how-

ever, the actual tool path is M0 ? M1, then the error has a angle a
round X axis, forming an perpendicity error.

4.2.5. S5: Stage error analysis
If there are l(k) newly generated characteristics at stage k, then

according to Eq. (18), the stage error of stage k is

usðkÞ ¼ A4ðkÞxFCSk
0FCSk

þ utðkÞ ð33Þ
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75;utðkÞ is a stack of x0FCS

iðkÞ ,

corresponding to tool errors for all characteristics machined
at stage k, and usðkÞ is the error contributed by current stage,
which is a coupling error of fixture error and tool error, both
utðkÞ and usðkÞ have a dimension of 6lðkÞ�1, and A4ðkÞ has a
dimension of 6lðkÞ�6.

4.2.6. S6: Variation of characteristics generated at stage K
The variation of the newly generated characteristic is repre-

sented by XnewðkÞ ¼ xRðkÞ
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� �T

.

According to Eq. (19), it is calculated:

XnewðkÞ ¼ A5ðkÞ � xRðkÞ
FCSðkÞ þ usðkÞ ð34Þ

where us(k) is the error induced by stage k, xRðkÞ
FCSðkÞ is datum error,

A5ðkÞ ¼ ½D1ðkÞT � � �DiðkÞT � � �DlðkÞT �
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is coefficient matrix, in which
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4.2.7. S7: Deduction of state space model
By combining the variations of characteristics generated at

stage k and variation of other characteristics at upstream stages,
the state vector is obtained by coupling the variation of character-
istics generated at upstream stages before stage k (x1ðkÞ in Eq. (22))
and the variation generated at stage k,
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Fig. 10. Effects illustration of fixture error in rotary parts machining process.
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xðkÞ ¼ x1ðkÞ þ A6ðkÞxnewðkÞ ð35Þ

where A6(k) is a selective matrix with all the identity elements cor-
responding to the newly generated dimensional error at stage k (see
Eq. (36)).
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ð36Þ

By substituting Eqs. (30)–(34) into (35), the state space model for
MTPs is obtained,

XðkÞ¼X1ðkÞþA6ðkÞXnewðkÞ
¼ ½A1ðkÞþA6ðkÞA5ðkÞA2ðkÞA1ðkÞ�Xðk�1Þ

þA6ðkÞ A4ðkÞA3ðkÞ I6�6½ �
uf ðkÞ
utðkÞ

� �
¼AðkÞXðk�1ÞþBðkÞuðkÞ

ð37Þ

So far, all of the coefficients of state space model (20) for MTP
are obtained.

AðkÞ ¼ A1ðkÞ þ A6ðkÞA5ðkÞA2ðkÞA1ðkÞ½ �
BðkÞ ¼ A6ðkÞA4ðkÞA3ðkÞ A6ðkÞ½ �

ð38Þ
The coefficient for the measurement can be deduced in the
same way. In order to shorten the passage, it is not listed in this
paper.
5. Case study

5.1. Experiment setup

The proposed state space model for MTPs is validated by one
type of rotary workpieces, produced by a domestic machining cor-
poration whose primal products are valve shells. Fig. 12(a) depicts
a raw part of the valve shell; Fig. 12(b) is a 3-D model of the final
product. Fig. 12(c) is a cross-section drawn of valve shell from the
axles of end A n B n C n D after the MTP. Due to confidentiality
requirements, the tolerance in the part drawn is deleted. Fig. 13
shows the real tuning process of the valve shell.
Fig. 11. Illustration of tool error.



Fig. 12. Valve shell part model.

Fig. 13. Workpiece turning process.

Fig. 14. Illustration of the first fixture scheme.

Fig. 15. Illustration of the second fixture scheme.
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Table 1
Nominal positions and orientations of KPCs.

No. Fixture scheme KPCs Designed tolerances Nominal position tR
n=mm Nominal angular xR

n=rad

OP10 B, 4-jaws Chuck Hole U21 Coaxiality0.1|U| [0,0,�29] [0,0, 0]
ExcircleU39 Not a KPC [0,0,0] [0,0, 0]

OP20 B downward, modular fixture (Process end D) Hole U14 Cylindricity0.02|V| [�42,0,�32.5] [p/2,0,p/2]
Hole U10 Cylindricity0.02|V| [�32,0,�32.5] [p/2,0,p/2]

OP30 B downward, modular fixture (Process end C) Hole U12 Cylindricity0.02|W| [�42,0,�44.5] [�p/2,0,�p/2]
Hole U8 Cylindricity0.02|W| [�32,0,�32.5] [�p/2,0,�p/2]

OP40 A, 4-jaws Chuck Slot U9.6 Coaxiality0.05|U| [0,0,�66.5] [0,p,0]
Hole U6.5 Coaxiality0.05|U| [0,0,�62.5] [0,p,0]
ExcircleU30 Not a KPC [0,0,�79.5] [0,p,0]

OP50 B, 4-jaws Chuck Slot U26 Depth 36 ± 0.1|A| [0,0,�36] [0,0, 0]
Slot U14 Depth48 ± 0.1|A| [0,0,�48] [0,0, 0]
Hole U8 Coaxialityjn0.05|U| [0,0,�35.5] [0,0, 0]

Table 2
Predicted values of KPCs’ variations.

KPCs Designed tolerances x y z i j k

Hole U21 Coaxiality0.1|U| 0 �0.0193 0 0.0007 0 0
ExcircleU39 Not a KPC 0 �0.0387 0 0 0 0
Hole U14 Cylindricity0.02|V| 0.0120 0.0280 0 0 �0.0002 �0.0008
Hole U10 Cylindricity0.02|V| 0.0120 0.0213 0 0 �0.0002 �0.0008
Hole U12 Cylindricity0.02|W| �0.0040 0.0280 0 0 �0.0002 �0.0008
Hole U8 Cylindricity0.02|W| �0.0040 0.0213 0 0 �0.0002 �0.0008
Slot U9.6 Coaxiality0.05|U| 0 �0.0027 0 0.0013 0 0
Hole U6.5 Coaxiality0.05|U| 0 0.0017 0 0.0007 0 0
ExcircleU30 Not a KPC 0 �0.0193 0 0.0013 0 0
Slot U26 Depth 36 ± 0.1|A| 0 0 0 0.0007 0 0
Slot U14 Depth48 ± 0.1|A| 0 0 0 0.0007 0 0
Hole U8 Coaxiality ± 0.05|U| 0 0 0 0.0007 0 0

Table 3
Measurement values of KPCs’ variations.

KPCs Designed tolerances x y z i j k

Hole U21 Coaxiality0.1|U| 0 �0.020 0 0.001 0 0
ExcircleU39 Not a KPC 0 �0.040 0.001 0 0 0
Hole U14 Cylindricity0.02|V| 0.013 0.027 0 0 0 �0.001
Hole U10 Cylindricity0.02|V| 0.013 0.023 0 0 0 �0.001
Hole U12 Cylindricity0.02|W| �0.004 0.027 0 0 0 �0.001
Hole U8 Cylindricity0.02|W| �0.004 0.022 0.001 0 0 �0.001
Slot U9.6 Coaxiality0.05|U| 0 �0.002 0 0.001 0 0
Hole U6.5 Coaxiality0.05|U| 0 0.002 0 0.001 0 0
ExcircleU30 Not a KPC 0 �0.020 0.000 0.001 0 0
Slot U26 Depth 36 ± 0.1|A| 0 0 0.001 0.001 0 0
Slot U14 Depth48 ± 0.1|A| 0 0 0 0.001 0 0
Hole U8 Coaxiality ± 0.05|U| 0 0 0.001 0.001 0 0

Modular fixture
OP10 OP20 OP30 OP40 OP50

Modular fixture

Fig. 16. Illustration of valve shell MTP.

52 S. Du et al. / Computers & Industrial Engineering 82 (2015) 41–53



S. Du et al. / Computers & Industrial Engineering 82 (2015) 41–53 53
The turning process is implemented using a computer numeri-
cal control (CNC) machining center (CTX420). The whole process is
performed under two fixture schemes. One fixture scheme is
shown as Fig. 14 and the other one is the chuck jaws scheme
shown as Fig. 15. The turning process is mainly composed by five
operations, noted as OP10–OP50 (see Fig. 16). The workpiece toler-
ance are given in Table 1.

End plane A and B are important datum characteristics whose
errors are introduced as datum errors affecting the machining pre-
cision of other characteristics, such as the holes and slots. The exci-
rlce machined at OP10 is the datum at OP40, thus the error of OP10
will be accumulated to the variation of characteristics machined at
OP40. Similarly, the variation of characteristics machined at OP40
is one of the important sources of variation for OP50. The turning
process of such a valve shell is a typical MTP where variations
are propagated, transmitted and synthesized through all the
stages.

6. Results and discussion

The model is programmed using MATLAB 2010�. For each stage,
the variation of the workpiece characteristics can be output auto-
matically once the fixture error and tool error are input to the pro-
gram. The three-dimensional variation propagation model for
rotary workpieces is used for KPC variation prediction. Table 2 is
the predicted values of KPCs’ variations with fixture error at each
stage equals to [0,0.01,0,0,0,0].

The actual measurements for all these characteristics are listed
in Table 3. Comparing Tables 2 and 3, the overall differences
between the predicted values and the actual measurements are
reasonably small. Take £8 for example, the coaxiality requirement
is 0.02 mm with respect to axis W. The prediction error is
0.004 mm, which means a quite small deviation between the
model prediction and the actual values. For other characteristics,
the prediction error between the predicted value and the actual
measurement also exist, and one main reason may be accounted
to the tool error, which is set up as zero in the prediction model
in the experiment. Whereas the actual tool error in the turning
process are nonzero values. The small discrepancies between the
predicted value and the actual measurement validate the proposed
model.

In addition, the proposed model also shows the variation pat-
terns. Take hole U14 and hole U10 from OP20 for examples, they
are both machined at OP20 under the modular fixture scheme.
They have a clear similar variation pattern since the fixture scheme
and the tool cutting are the same; the difference is caused by the
positional relationship with respect to the datum and some other
factors, such as the thermal and the cutting force change.

9. Conclusions

Based on the definition of four types of coordinate systems and
four types of errors, the paper conducts an analysis of fixture error,
datum error and their coupling effect under jaws chuck fixturing
scheme. A state space model of the three-dimensional variation
propagation for MTP is built based on the analysis of turning pro-
cedure and the coupling analysis, depicting the transmission and
accumulation of the variation of product characteristics among
stages. A valve shell turning case is chosen to verify the proposed
model, and the results show that the proposed model yield satis-
factory predict precision. The proposed model can be further
applied into tolerance allocation, process control, fault diagnosis
and process improvement.
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