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Modeling and analysis of multi-stage manufacturing systems (MMSs) for product quality propagation
have attracted a great deal of attention recently. Due to cost and resources constraints, MMSs do not
always have ubiquitous inspection, and MMSs with remote quality information feedback (RQIF, i.e., qual-
ity inspection operation is conducted at the end of the production line) are widely applied. This paper
develops a Markov model to analyze quality propagation in MMSs with RQIF. Analytical expressions of
the final product quality are derived and the monotonicity properties are investigated. A quality bottle-
neck identification method is explored based on the proposed Markov model. The results of case study
demonstrate the effectiveness of the proposed model.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Most complex manufacturing systems involve a large number
of stages. As workpieces move through these stages, the variations
of product quality are usually introduced and propagated. The vari-
ations of the final product quality are the accumulation of varia-
tions from all stages. Therefore, it is significantly important to
investigate the product quality propagation in multi-stage manu-
facturing systems (MMSs).

Modeling and analysis of MMSs for quality improvement have
received intensive investigation. Recent quantitative modeling
methods can be roughly classified as data-driven (applying statis-
tical approaches based on measurement data) and analytical
(applying physical approaches based on engineering knowledge)
methods. Data-driven methods focus on investigating patterns in
the massive historical quality dataset to model the relationships
between the product quality and manufacturing systems and thus
do not require a comprehensive prior knowledge of the systems.
Some authors employ data-driven auto-regression (AR) models to
describe the quality propagation (Agrawal, Lawless, & Mackay,
1999; Lawless, Mackay, & Robinson, 1999). The parameters of their
AR(1) models are estimated based on product measurements.
Some authors develop data-driven modeling methods based on
the analysis of the linear space spanned by the eigenvectors of
the covariance matrix of the quality measurements (Jin & Zhou,
2006; Johnson & Wichern, 2002). Mondal, Maiti, and Ray (2013)
combined statistical regression, Taylor series expansion and a vari-
ation model to investigate the robustness of MMSs.

Different from data-driven models, analytical models employ
off-line analysis of MMSs based on fundamental physical laws.
One of the most popular analytical models used for quality
improvement is the state space model, first developed by Jin and
Shi (1999) for two-dimensional assembly systems. This model
directly links engineering knowledge of variation sources with pro-
duct measurement data. Since then, it is further investigated in
three-dimensional assembly systems (Camelio, Hu, & Ceglarek,
2004; Ding, Ceglarek, & Shi, 2002a; Huang, Lin, Bezdecny, Kong,
& Ceglarek, 2007; Huang, Lin, Kong, & Ceglarek, 2007; Loose,
Chen, & Zhou, 2009; Zhou, Qiang, & Zhou, 2012). However, these
models could not be applied in the machining systems directly
since the fundamental physical laws of quality propagation are
quite different for assembly and machining systems (Du, Yao,
Huang, & Wang, 2015). Therefore, some authors (Abellan-Nebot,
Liu, Subirón, & Shi, 2012; Djurdjanovic & Ni, 2001, 2003, 2006;
Du, Yao, & Huang, 2014, 2015; Huang & Shi, 2004a, 2004b;
Huang, Shi, & Yuan, 2003; Loose, Zhou, & Ceglarek, 2007; Loose,
Zhou, Zhou, & Ceglarek, 2010; Wang, Huang, & Katz, 2005; Zhou,
Chen, & Shi, 2004; Zhou, Huang, & Shi, 2003) investigate the
variation propagation for machining systems by applying the
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Nomenclature

Mi the ith stage in MMSs
M0i the stage merged by the first i stages in MMSs
gi Mi or M0i is producing a good product
di Mi or M0i is producing a defective product
gigiþ1 Mi or M0i is producing a good product and Miþ1 is also

producing a good product
gidiþ1 Mi or M0i is producing a good product and Miþ1 is

producing a defective product
digiþ1 Mi or M0i is producing a defective product and Miþ1 is

producing a good product
didiþ1 Mi or M0i is producing a defective product and Miþ1 is

also producing a defective product
P the probability of the system in one certain steady state
a1 the probability for M1 to transit from state g1 to state d1
b1 the probability for M1 to transit from state d1 to state g1
a0i the probability for M0i to transit from state gi to state

diði P 2Þ
b0i the probability for M0i to transit from state gi to state

giði P 2Þ
ci when the coming part is good, the probability for Mi to

transit from state gi to state di

li when the coming part is good, the probability for Mi to
transit from state di to state gi

gi when the coming part is defective, the probability for Mi

to transit from state gi to state di

hi when the coming part is defective, the probability for Mi

to transit from state di to state gi
k0i quality failure probability for ith stage in general Mar-

kov model
l0i quality repair probability for ith stage in general Markov

model
k00i quality failure probability without repair for ith stage in

quality flow model
m00i quality failure probability with repair for ith stage in

quality flow model
l00i quality repair probability for ith stage in quality flow

model
Xi;t the matrix of state probabilities at time t for the system

with i stages
Xi the matrix of steady-state probabilities for the system

with i stages
Ai the matrix of state transition probabilities for the sys-

tem with i stages
Sck

the sensitivity of PðgkÞ with respect to ck
Slk

the sensitivity of PðgkÞ with respect to lk
Sgk

the sensitivity of PðgkÞ with respect to gk
Shk the sensitivity of PðgkÞ with respect to hk
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state space model. Detailed descriptions of existing research on the
state space model are provided in a monograph (Shi, 2006) and a
survey (Shi & Zhou, 2009). However, analysis of complex systems
using the state space model based on physical laws is often intract-
able (Shi & Zhou, 2009), and such analysis either relies on compli-
cated kinematics model of manufacturing systems, or is only
applicable to deal with dimensional errors and the application area
is limited (Ju, Li, Xiao, & Arinez, 2013; Ju, Li, Xiao, Huang, & Biller,
2014).

In another research line, Markov model has been widely used as
analytical tool to investigate the interactions between manufactur-
ing system design and product quality. Inman, Blumenfeld, Huang,
and Li (2003) pointed out that product quality and manufacturing
system design are tightly coupled. They reviewed the related liter-
ature and empirical evidence to show that manufacturing system
design has a significant impact on product quality. Since then,
the coupling between manufacturing system design and product
quality has received more and more research attention. Kim and
Gershwin (2005) developed a Markov model for machines with
both quality and operational failures, and identified important dif-
ferences between types of quality failures. Li and Huang (2007)
applied a Markov model to evaluate quality performance and
derived some closed expressions to calculate good part probability.
Kim and Gershwin (2008) proposed analytical and computational
methods using Markov model to evaluate three cases of long man-
ufacturing lines with quality and operational failures. Li,
Blumenfeld, and Marin (2008) investigated the impact of manufac-
turing system design on product quality through a case study at an
automotive paint shop and introduce the notion of quality robust-
ness. Wang, Li, Arinez, and Biller (2010) derived a closed formula to
quantify the probability of producing a good part using a Markov
chain model and investigated nonmonotonic properties of manu-
facturing systems. Colledani and Tolio (2011) proposed an analyt-
ical method for the joint design of quality and manufacturing
parameters. Wang, Li, Arinez, and Biller (2012) introduced some
indicators for identifying the quality improvability and bottleneck
sequence based on a Markov model. Ioannidis (2013) used a
Markov model to investigate joint production and quality control
in manufacturing systems with random demand. Wang, Li,
Arinez, and Biller (2013) developed a Markov model to analyze
product quality in manufacturing systems with batch productions
and a notation of quality bottleneck transaction was introduced to
describe the state transition that has the largest impact on quality.
Zhao and Li (2014) developed Markov analytical models to charac-
terize a furniture assembly system and lot size analysis and bottle-
neck analysis were carried out. The related literature are reviewed
and new directions are provided by Inman, Blumenfeld, Huang,
and Li (2013).

In spite of above effort, the current research work based on
Markov models assume that each stage of a manufacturing system
is independent, in other words, the product quality propagation
does not considered in their systems. Ju et al. (2013, 2014)
developed quality flow models to analyze product quality propaga-
tion and to identify the quality bottleneck for automotive paint
system and battery manufacturing system respectively. The appli-
cability of their models is demonstrated using case study.
However, their quality flow models are based on assumption that
the manufacturing system has ubiquitous inspection, namely,
every stage has an inspection station. Due to cost and resources
constraints in reality, it is not always possible to measure outputs
and set up inspection station in every stage in a manufacturing
system. A manufacturing system with remote quality information
feedback (RQIF) is a representation of situations where most but
not all operations are reliable in terms of quality and where the
product defects are only inspected and identified at the end of
the production line (see Fig. 1). This is not desirable, but it is often
unavoidable and applied in reality (Kim & Gershwin, 2008;
Montgomery, 2009).

Manufacturing systems with RQIF are often applied. Ding,
Ceglarek, and Shi (2002b) described a multistage assembly system
including three assembly stages and one measurement station at
the end of the assembly line. Zantek, Wright, and Plante (2002,
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Fig. 1. A multi-stage manufacturing system with remote quality information feedback.
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2006) described a circuit board assembly process consisting of nine
stages, beginning at solder applicator and ending at manual solder.
At the end of the assembly line, the board undergoes extensive
testing and numerous product quality measurements. In semicon-
ductor manufacturing, some defects are detected only at the
circuit-testing stage, and this can only occur after chip fabrication
is completed (Kim & Gershwin, 2008). In addition to the above
mentioned examples, such systems can be found in many other
manufacturing systems as well, such as engine manufacturing
(Du & Xi, 2012) and aircraft horizontal stabilizer assembly (Du,
Lv, & Xi, 2012; Du & Lv, 2013).

However, to best knowledge of the authors, there is no research
work about developing Markov models to analyze the quality
propagation in MMSs with RQIF. In MMSs with RQIF, there exist
not only quality degradation but also quality correction. This
means that because of RQIF, a defective product from upstream
stages will not go out of the system until the last stage and they
may be corrected by downstream stages. To reflect these charac-
teristics and investigate such systems, in this paper, a Markov
model is developed to analyze the quality bottleneck and provide
some continuous quality improvement strategies.

The remainder of this paper is organized as follows. In Section 2,
a Markov model is developed and analytical expressions of the
final product quality are derived to analyze quality propagation
in MMSs with RQIF. In Section 3, monotonicity properties are
investigated. In Section 4, a quality bottleneck identification
method is explored based on the developed Markov model. A case
study is conducted to validate the proposed model in Section 5.
Finally, the conclusion is given in Section 6.

2. Markov model

2.1. Assumptions

The assumptions of state transition, inspection and quality
characteristics in MMSs with RQIF are described as follows.

(1) The manufacturing system consists of n stages and one
inspection station. The inspection station is at the end of
the system.

(2) The quality of the product manufactured by Mi ði P 2Þ relies
on both the state of Mi and the quality of the coming parts
from Mi�1. There exist quality degradation and quality cor-
rection in the system. The product quality might get worse
or better after a certain stage.

(3) We only study the working or production period of the sys-
tem. Machine breakdowns are not considered.
g1 d1

1

1

1- 1 gi

i

i

1- i

(a) (b)

Fig. 2. State transi
(4) Define that stage Mi ði ¼ 1;2; . . . ;nÞ is in a good state gi or a
defective state di if it is producing a product with good qual-
ity or defective quality at time t.

(5) The quality of the coming parts for Mi ði P 2Þ at time ðt þ 1Þ
depends on the state of Mi�1 at time t. The states gi�1 and di�1

for Mi�1 at time t means good and defective coming parts for
Mi at time ðt þ 1Þ, respectively.

(6) The state of M1 is not affected by the state of M2. When M1 is
in good state g1, it has probability a1 to transit to defective
state d1 and probability ð1� a1Þ to good state g1. When M1

is in defective state d1, it has probability b1 to transit to good
state g1 and probability ð1� b1Þ to defective state d1 (see
Fig. 2(a)).

With good coming parts, when Mi ði P 2Þ is in good state gi, it
has probability ci to transit to defective state di and probability
ð1� ciÞ to good state gi. When Mi is in defective state di, it has
probability li to transit to good state gi and probability ð1� liÞ
to defective state di (see Fig. 2(b)).

With defective coming parts, when Mi ði P 2Þ is in good state gi,
it has probability gi to transit to defective state di and probability
ð1� giÞ to good state gi. When Mi is in defective state di, it has
probability hi to transit to good state gi and probability ð1� hiÞ to
defective state di (see Fig. 2(c)).

We refer a1; ci;gi ði P 2Þ as quality failure probabilities and
b1;li; hi ði P 2Þ as quality repair probabilities. Similar to through-
put analysis and in accordance with some works of quality analysis
based on Markov model (Ju et al., 2013, 2014; Wang et al., 2010; Li
& Huang, 2007), we assume that all these transition probabilities
are constant. Actually in real manufacturing systems, machines
have stable production periods during which the state transitions
can be seen as stable.

The problem can be addressed as: Under the above assump-
tions, develop a proper method to evaluate and analyze the quality
performance of MMSs with RQIF based on system parameters.
Before deriving the model for multi-stage systems, the paper first
develops a Markov model for a two-stage system, which will be
extended for MMSs (the number of stages is more than two).
2.2. Two-stage case ðn ¼ 2Þ

For a manufacturing system with two stages, it has the follow-
ing four probable quality states at time t: (1) state g1g2 which
means that both M1 and M2 are producing good products; (2) state
d1g2 which means that M1 is producing defective product while M2

is producing good one; (3) state g1d2 which means that M1 is
di 1- i
gi di

i

i

1- i 1- i

(c)

tion diagrams.
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producing good product while M2 is producing defective one; (4)
state d1d2 which means that both M1 and M2 are producing defec-
tive products. The matrix of corresponding state probabilities at
time t are denoted as

X2;t ¼ Pðg1g2; tÞ Pðd1g2; tÞ Pðg1d2; tÞ Pðd1d2; tÞ½ � ð1Þ

The system transits among these four states with certain prob-
abilities. For example, transiting from state ðg1g2; tÞ to ðg1g2; t þ 1Þ
means that: (1) M1 continues to produce good product with prob-
ability ð1� a1Þ and it passes coming parts with good quality to
M2; (2) with good coming parts, M2 maintains good state g2 with
probability ð1� c2Þ. So under assumptions (5) and (6), the proba-
bility that the system transits from state ðg1g2; tÞ to ðg1g2; t þ 1Þ
could be the multiplication of the two probabilities:
ð1� a1Þð1� c2Þ. Similarly, we can obtain the other transition prob-
abilities. The matrix of state transition probabilities for a
two-stage system is

A2¼

ð1�a1Þð1�c2Þ a1ð1�c2Þ ð1�a1Þc2 a1c2

b1ð1�g2Þ ð1�b1Þð1�g2Þ b1g2 ð1�b1Þg2

ð1�a1Þl2 a1l2 ð1�a1Þð1�l2Þ ð1�a1Þl2

b1h2 ð1�b1Þh2 b1ð1�h2Þ ð1�b1Þð1�h2Þ

2
6664

3
7775

ð2Þ

Taking state probability Pðg1g2; t þ 1Þ for example, we have

Pðg1g2; t þ 1Þ ¼ Pðg1g2; t þ 1jg1g2; tÞ þ Pðg1g2; t þ 1jd1g2; tÞ
þ Pðg1g2; t þ 1jg1d2; tÞ þ Pðg1g2; t þ 1jd1d2; tÞ
¼ ð1� a1Þð1� c2ÞPðg1g2; tÞ þ b1ð1� g2ÞPðd1g2; tÞ
þ ð1� a1Þl2Pðg1d2; tÞ þ b1h2Pðd1d2; tÞ

ð3Þ

In terms of steady states, we denote X2 as the matrix of steady-state
probabilities.

X2 ¼ Pðg1g2Þ Pðd1g2Þ Pðg1d2Þ Pðd1d2Þ½ � ð4Þ

And we have

lim
t!1

Pðg1g2; tÞ :¼ Pðg1g2Þ ð5Þ

lim
t!1

Pðd1g2; tÞ :¼ Pðd1g2Þ ð6Þ

lim
t!1

Pðg1d2; tÞ :¼ Pðg1d2Þ ð7Þ

lim
t!1

Pðd1d2; tÞ :¼ Pðd1d2Þ ð8Þ

It follows that

Pðg1g2Þ ¼ ð1� a1Þð1� c2ÞPðg1g2Þ þ b1ð1� g2ÞPðd1g2Þ
þ ð1� a1Þl2Pðg1d2Þ þ b1h2Pðd1d2Þ ð9Þ

By calculating the following equations

X2A2 ¼ X2 ð10Þ

Pðg1g2Þ þ Pðd1g2Þ þ Pðg1d2Þ þ Pðd1d2Þ ¼ 1 ð11Þ

we can get the probabilities of each state that the system is in,
respectively.

The final quality can be seen as the probability that M2 is in
state g2 of producing product with good quality. Pðg2Þ character-
izes the probability of producing good product of the system and
we have

Pðg2Þ ¼ Pðg1g2Þ þ Pðd1g2Þ ¼
A

Aþ B
ð12Þ

where
A¼ ½c2ð1� a1Þ � b1g2�½a1l2b1h2 �l2h2ð1� a1Þð1� b1Þ�
þ ½1� ð1� b1Þð1�g2Þ þa1ð1� c2Þ�fb1h2½1� ð1�a1Þð1�l2Þ�
þ b1l2ð1� h2Þð1�a1Þgþ ½1� ð1� a1Þð1� c2Þ
þ b1ð1�g2Þ�fh2ð1� b1Þ½1� ð1�a1Þð1�l2Þ�
þ b1a1l2ð1� h2Þg

B ¼ ½b1h2 � l2ð1� a1Þ�fc2ð1� a1Þ½1� ð1� b1Þð1� g2Þ�
þ a1b1g2ð1� c2Þg � ½a1l2 � h2ð1� b1Þ�
� fb1g2½1� ð1� a1Þð1� c2Þ� þ c2b1ð1� a1Þð1� g2Þg
þ f½1� ð1� a1Þð1� c2Þ�½1� ð1� b1Þð1� g2Þ�
� a1b1ð1� c2Þð1� g2Þg½1� ð1� a1Þð1� l2Þ þ b1ð1� h2Þ�

See Appendix A for proof of Eq. (12).
When we ignore the quality propagation between the two

stages, namely, the quality of the product passing M2 only depends
on the state of M2, we have c2 ¼ g2;l2 ¼ h2. Under these condi-
tions, the probability of producing good product can be obtained

Pðg2Þ ¼
A

Aþ B
¼ l2

c2 þ l2
ð13Þ

where

A ¼ ða1 þ b1Þ
2l2 þ ða1 þ b1Þð1� a1 � b1Þl2

2

þ ða1 þ b1Þð1� a1 � b1Þc2l2

B ¼ ða1 þ b1Þ
2c2 þ ða1 þ b1Þð1� a1 � b1Þc2

2

þ ða1 þ b1Þð1� a1 � b1Þc2l2

This conclusion is consistent with that in work of Li and
Huang (2007) which is about the product quality of one-
product-one-stage system.

We consider a special Bernoulli case which is often employed in
quality analysis (Kim & Gershwin, 2005; Wang, Li, Arinez, Biller, &
Huang, 2008). In this case, the system reliability follows a Bernoulli
distribution: a1 þ b1 ¼ 1; c2 þ l2 ¼ 1;g2 þ h2 ¼ 1. Under these
conditions, we have

Pðg2Þ ¼ 1� c2 þ a1ðc2 � g2Þ ð14Þ

where ðc2 � g2Þ can be seen as the impact that the quality of the
coming parts has on the final quality. The larger the difference
between c2 and g2, the larger the impact is.

2.3. Multi-stage case ðn > 2Þ

In order to construct a general quality model for MMSs with
RQIF, we first derive the model for three-stage systems and intro-
duce the iteration method. For a three-stage system, the final qual-
ity equals to the probability with which M3 is producing good
product. The state of M3 depends on both the state of itself in
the previous time and the quality of the coming parts from M2

which is equivalent to the final quality of the two-stage system
M1–M2. We can derive the quality of system M1–M2 by applying
the Markov model derived in Section 2.2. Therefore, the following
procedure is presented to obtain the final quality of the three-stage
system.

(1) Merge M1 and M2 to one stage M0
2.

(2) Obtain the final product quality of system M0
2–M3 by

applying the derived model for the two-stage system.

For the two-stage system M0
2–M3, we have six basic parameters

a02; b
0
2; c3;l3;g3; h3, among which c3;l3;g3 and h3 are parameters of

M3;a02 and b02 are parameters of the merged stage M0
2. The

parameter a02 denotes the probability that M0
2 transits from state
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g02 to state d02, which is equivalent to the probability that the
two-stage system transits from state g1g2 or d1g2 to state g1d2 or
d1d2. As a result,

a02 ¼
Pðg1g2Þc2 þ Pðd1g2Þg2

Pðg1g2Þ þ Pðd1g2Þ
ð15Þ

Similarly

b02 ¼
Pðg1d2Þl2 þ Pðd1d2Þh2

Pðg1d2Þ þ Pðd1d2Þ
ð16Þ

For a multi-stage system, a general iterative procedure is illus-
trated in Fig. 3 and the main steps are presented as follows.

(1) Merge M1 and M2 to one stage M0
2, and model the quality of

the new two-stage system M0
2–M3.

(2) Merge M0
2 and M3 to one stage M0

3, and model the quality of
the new two-stage system M0

3–M4.
(3) Continue this iteration process until the first ðn� 1Þ stages

are merged to one stage M0
n�1, and model the quality of the

final two-stage system M0
n�1–Mn.

During the iterative process of n-stage system, any two-stage
system M0

i–Miþ1 has six basic parameters. They are
ciþ1;liþ1;giþ1; hiþ1 reflecting the characteristics of Miþ1 and a0i; b

0
i

reflecting the characteristics of M0
i. Also, we have

a0i ¼
Pðgi�1giÞci þ Pðdi�1giÞgi

Pðgi�1giÞ þ Pðdi�1giÞ
ð17Þ

b0i ¼
Pðgi�1diÞli þ Pðdi�1diÞhi

Pðgi�1diÞ þ Pðdi�1diÞ
ð18Þ

The matrix of state transition probabilities is
Aiþ1 ¼

ð1� a0iÞð1� ciþ1Þ a0ið1� ciþ1Þ ð1� a0iÞci a0iciþ1

b0ið1� giþ1Þ ð1� b0iÞð1� giþ1Þ b0igiþ1 ð1� b0iÞgiþ1

ð1� a0iÞliþ1 a0iliþ1 ð1� a0iÞð1� liþ1Þ ð1� a0iÞliþ1

b0ihiþ1 ð1� b0iÞhiþ1 b0ið1� hiþ1Þ ð1� b0iÞð1� hiþ1Þ

2
6664

3
7775 ð19Þ
The matrix of the steady-state probabilities is

Xiþ1 ¼ Pðgigiþ1Þ Pðdigiþ1Þ Pðgidiþ1Þ Pðdidiþ1Þ
� �

ð20Þ
M1 M2 Mn-1 Mn-1

M2' Mn-1 Mn

Mn-1' Mn

Fig. 3. Iterative procedure for multi-stage systems.
According to Markov model, we obtain

Xiþ1Aiþ1 ¼ Xiþ1 ð21Þ

Pðgigiþ1Þ þ Pðdigiþ1Þ þ Pðgidiþ1Þ þ Pðdidiþ1Þ ¼ 1 ð22Þ

The final probability of producing good product for the merged
two-stage system is

Pðgiþ1Þ ¼ Pðgigiþ1Þ þ Pðdigiþ1Þ ð23Þ

Therefore, to analyze the quality performance of MMSs, the
basic idea is that: first merge the multiple stages into two stages
with iteration method and then apply the Markov model devel-
oped in Section 2.2.

2.4. Model accuracy investigation

In the multi-stage case, the iteration method is used to derive
the model. To investigate the accuracy of this method, extensive
numerical experiments have been carried out by randomly select-
ing the parameters of MMSs in a reasonable range of values.

In our model, the value ranges of quality failure probabilities
and quality repair probabilities generally are [0,1]. In the numeri-
cal experiments, based on actual production conditions, we narrow
down the value ranges according to some works (Wang et al., 2010,
2013) and assume that

(1) Quality failure probabilities with good coming parts are rel-
atively small, a1 2 ½0;0:3� and ci 2 ½0;0:3�; ði P 2Þ.

(2) Quality repair probabilities with good coming parts have
large values b1 2 ½0:7;1� and li 2 ½0:7;1�; ði P 2Þ.

(3) Quality failure probabilities and quality repair probabilities
with defective coming parts keep in the range of [0,1],
gi 2 ½0;1�; hi 2 ½0;1�.
In accuracy investigation, the number of stages is from 2 to 10.
More than 10,000 numerical experiments are carried out by ran-
domly and uniformly generating parameters a1; b1; ci;li;gi; hi

within their value ranges based on the assumptions. We generate
random numbers between 0 and 1 and zero denotes the state of
producing defective product while one denotes the state of produc-
ing good product. Then we have the simulated probability of pro-
ducing good product for the system. The difference between the
results calculated from the developed model and from the simula-
tion illustrates the accuracy of the model. The mean and variance
of the difference with 2–10 processing stages are shown in
Fig. 4(a) and (b), respectively.

From the above analysis, we can see that when the number of
stages increases from two to ten, the mean error of the model com-
pared with the simulation maintains in the range of �0:2% and the
variance is less than 1:5� 10�4. As the production processes are
stochastic, the differences between the model and the simulation
are randomly distributed within their ranges. Therefore, the itera-
tion method has sufficient accuracy assurance and can be used in
the quality analysis of MMSs.
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2.5. Comparison with the state-of-the-art

Recent research that uses transition probabilities to study the
quality propagation in MMSs is rare. After the authors making
every effort to search, there is only one related paper Ju et al.
(2014). Here we make a detailed comparison between the method
proposed in this paper and the one in Ju et al. (2014) respectively.

Firstly, the two methods focus on different kinds of MMSs. In Ju
et al. (2014), the assembly line has inspection stations and repair
stations after each stage. In this paper, the MMSs have only one
inspection station at the last stage and no repair stations exist.
The most significant difference between these two kinds of sys-
tems is the ways of quality propagation. For systems in Ju et al.
(2014), the coming parts for each stage are all with good quality,
and the quality corrections by the system itself are not considered.
But for the system with RQIF, the coming parts may be good or
defective for each stage before being processed and there exist
both quality degradation and quality correction. Actually in real
manufacturing systems, there do exist the condition where a part
with dissatisfactory quality becomes good after being processed.
Taking a hole with dimensional requirement 10þ0:02

�0:02 (unit: mm)
for example, when after rough machining, its dimension is 9.7
(mm) which is dissatisfactory, then it can be corrected to 10þ0:02

�0:02

(mm) by the downstream finish stage.
Secondly, the proposed methods are different although they’re

both based on transition probabilities. In Ju et al. (2014), they
assume the probabilities of initial states Pðg0Þ and Pðr0Þ to be
known and the final quality PðgkÞ and PðrkÞ are calculated by mul-
tiplying the transition probabilities by Pðg0Þ and Pðr0Þ. The manu-
facturing systems involve external interference. However, the
MMSs in this paper have no repair station and the inspection sta-
tion is also remote, so the whole manufacturing system is stochas-
tic. Therefore, a Markov model is proposed to describe the
characteristics of this kind of system.

In conclusion, the methods proposed by Ju et al. (2014) and this
paper are quite different as their target systems quite differ from
each other, although they are both based on transition probabili-
ties. They are meant for different kinds of systems.
3. Analysis of monotonic properties

In this section, based on the above developed model, we will
investigate the monotonic properties of the final quality.
Intuitively, monotonic properties are thought to be expected. For
example, we may expect that any increase in quality repair proba-
bilities or any decrease in quality failure probabilities can lead to
the improvement of final quality. However, if such monotonic
properties do not hold, we will fail to obtain the quality improve-
ment based on them. Therefore, studying the monotonic properties
is of great importance for quality improvement.

Although we hold the view that the monotonic properties in
terms of quality failure probabilities and quality repair probabili-
ties are expected, numerical experiments suggest that these prop-
erties do not hold all the time. We will take the Bernoulli case of
two-stage systems and equal-stage Bernoulli case of three-stage
systems for example to illustrate the indeterminacy of the mono-
tonic properties in MMSs.

3.1. Two-stage systems under Bernoulli case

According to Eq. (14), calculate the partial derivatives of a1; c2

and g2 respectively

@Pðg2Þ
@a1

¼ c2 � g2 ð24Þ

@Pðg2Þ
@c2

¼ a1 � 1 ð25Þ

@Pðg2Þ
@g2

¼ �a1 ð26Þ

It’s obvious that the monotonic properties with respect to c2

and g2 are determinate. The final quality will decrease with respect
to c2 and g2 as a1 � 1 6 0 and �a1 6 0. However, the monotonicity
with respect to a1 depends on the difference between c2 and g2.
When c2 is larger than g2, the final quality will increase with
respect to a1, otherwise, it will decrease. This is out of our general
expectations. This means that the difference between c2 and g2 not
only reflects the impact that the quality of the coming parts has on
final quality, but also plays a determinate role in the way how
parameters of M1 influence the final quality.

For a two-stage system, the monotonic properties with respect
to quality failure probabilities and quality repair probabilities of
the second stage are just as what we expected. However the mono-
tonic properties with respect to the probabilities of the first stage
depend on the value of the quality failure probabilities of M2 with
good or defective coming parts.

3.2. Three-stage systems under equal-stage Bernoulli case

In a three-stage system, for simplification, besides Bernoulli
conditions, we assume that transition probabilities for M2 and
M3 are identical. Under this equal-stage Bernoulli case, we
have a1 þ b1 ¼ 1; c2 þ l2 ¼ 1;g2 þ h2 ¼ 1; c3 ¼ c2;l3 ¼ l2;g3 ¼ g2;

h3 ¼ h2. According to Eqs. (21)–(23), the final probability of
producing good product for the system can be obtained as

Pðg3Þ ¼ 1� a1g2
2 � c2g2 � a1c2

2 � c2 þ 2a1g2c2 þ c2
2

¼ 1� a1ðg2 � c2Þ
2 � c2ðg2 � c2Þ � c2

ð27Þ

Calculate the partial derivatives in terms of a1; c2 and g2

respectively,

@Pðg3Þ
@a1

¼ �ðg2 � c2Þ
2 ð28Þ
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@Pðg3Þ
@c2

¼ 2ða1 � 1Þðg2 � c2Þ þ g2 � 1 ð29Þ

@Pðg3Þ
@g2

¼ �2a1ðg2 � c2Þ � c2 ð30Þ

Eqs. (28)–(30) show that the monotonic properties with respect to
a1 are determinate and the decrease in a1 will lead to quality
improvement. But the monotonic properties with respect to c2

and g2 depend on the value of a1; c2 and g2.
The two examples verify that the monotonic properties of the

final quality with respect to quality failure probabilities and qual-
ity repair probabilities are not always expected. But they still pro-
vide some insights about the quality of MMSs.

(1) Theorem 1: For any two-stage system M0
i–Miþ1 ði P 2Þ, the

monotonic properties of Pðgiþ1Þ with respect to the second
stage Miþ1’s parameters: ci;li;gi; hi are determinate.
Reducing the quality failure probabilities ci and gi or
increasing the quality repair probabilities li and hi will lead
to the improvement of Pðgiþ1Þ.

(2) As monotonic properties of the final quality PðgnÞ with
respect to certain parameters are not always the same as
what we expect, we can first gain the basic parameters of
the system and then use the models developed in this paper
to do specific monotonic analysis.

4. Bottleneck analysis

Bottleneck identification and mitigation have been viewed as
one of the most important issues in quality analysis of manufactur-
ing systems. It belongs to the theory of constraints (TOC) devel-
oped by Eli Goldratt in 1988 (Goldratt, 1988) and has been
applied to many fields such as production, logistics, and supply
chain (Zeynep, Noyan, & Ozalp, 2014). It is a methodology for iden-
tifying the most important limiting factor. The concept of TOC can
be summarized as two important aspects (Rahman, 1998). (1)
Every system must have at least one constraint limiting a system
from achieving higher performance versus its goal. (2) The exis-
tence of constraints represents opportunities for improvement.

Based on TOC there must exist at least one stage or one param-
eter that limits the MMS achieving its goal of higher quality. Here
we refer to it as quality bottleneck. And it provides some chances
for the quality improvement of MMSs.

Here we define the stage after which the quality has the largest
possible decline as the quality bottleneck stage. Let DPðgiÞ denote
the quality change after stage Mi and we have

DPðgiÞ ¼ PðgiÞ � Pðgi�1Þ ði P 2Þ ð31Þ

DPðg1Þ ¼ Pðg1Þ � Pðg2Þ ði ¼ 1Þ ð32Þ

Then the stage with the most negative value of DPðgiÞ will be
the quality bottleneck stage. As the bottleneck stage has been
found, for quality improvement, we should consider that if only
one parameter of the bottleneck stage Mi can be changed, which
one will bring the largest quality improvement to PðgiÞ. We define
the parameter which has the largest effect on PðgiÞ as the quality
bottleneck parameter for Mi. When i P 2, this procedure can be
seen as sensitivity analysis of PðgiÞ with respect to ci;li;gi and hi.
And when i ¼ 1, it would be sensitivity analysis of Pðg1Þ with
respect to a1 and b1.

For any two-stage system M0
i�1–Mi ði P 2Þ, assume that the

existing parameters for Mi are ci;li;gi; hi, and the probability of
producing good product for Mi is PðgiÞ. Change only one
parameter and remain the others unchanged. Accordingly, the
changed parameters and probabilities are c0i;l0i;g0i; h

0
i and
Pci
ðgiÞ; Pli

ðgiÞ; Pgi
ðgiÞ; Phi

ðgiÞ, respectively. Then the sensitivity of
PðgiÞ with respect to ci;li;gi; hi could be written as

Sci
¼

Pci
ðgiÞ � PðgiÞ

�� ��=PðgiÞ
c0i � ci

�� ��=ci

ð33Þ

Sli
¼

Pli
ðgiÞ � PðgiÞ

�� ��=PðgiÞ
l0i � li

�� ��=li

ð34Þ

Sgi
¼

Pgi
ðgiÞ � PðgiÞ

�� ��=PðgiÞ
g0i � gi

�� ��=gi

ð35Þ

Shi
¼

Phi
ðgiÞ � PðgiÞ

�� ��=PðgiÞ
h0i � hi

�� ��=hi
ð36Þ

Specially, when i ¼ 1, the sensitivity analysis of Pðg1Þ with
respect to a1 and b1 is needed. According to the work of Li and
Huang (2007),

Pðg1Þ ¼
b1

a1 þ b1
ð37Þ

Assume that the changed parameters are a01; b
0
1 and

Pa1 ðg1Þ; Pb1 ðg1Þ. Then the sensitivity of Pðg1Þ with respect to a1

and b1 would be

Sa1 ¼
Pa1 ðg1Þ � Pðg1Þ
�� ��=Pðg1Þ

a01 � a1

�� ��=a1
ð38Þ

Sb1 ¼
Pb1
ðg1Þ � Pðg1Þ

�� ��=Pðg1Þ
b01 � b1

�� ��=b1
ð39Þ

Parameter with maxðSci
; Sli

; Sgi
; Shi
Þ for i P 2 or maxðSa1 ; Sb1 Þ for

i ¼ 1 is the quality bottleneck parameter and its improvement will
bring maximum benefit to the quality of product at the quality bot-
tleneck stage.

5. Case study

To validate the effectiveness of the proposed model and illus-
trate the method of quality bottleneck identification, a case study
has been carried out at the manufacturing line of valve shell. To
ensure the confidentiality of the data, all the parameters intro-
duced below have been modified and only used for illustration.

5.1. Experimental setup

The raw valve shell, the three-dimensional (3D) model and the
profile of the valve from the axes of side A/B/C/D are respectively
shown in Fig. 5(a)–(c). The experimental setup of manufacturing
process is described as Fig. 6, the CXT-420 turning machines are
applied, and the manufacturing process is roughly composed of
five stages, named OP10-OP50 (see Fig. 7 and Table 1).

The relationships among these five stages and the ways how
they are dependent have been discussed in detail in the work of
Du et al. (2015). Here we only take some examples to show their
connections briefly. The end face of the shell is machined in pro-
cess OP10 and its variation of flatness will affect the clamping
accuracy in processes OP20 and OP30. And the quality of the hole
which is first bored in OP10 can be corrected or deteriorated in
OP50.

The transition probabilities of this five-stage system can be esti-
mated from historical processing data. We first keep records of the
product quality before and after each stage and mark them as
‘‘good’’ or ‘‘defective’’. For a certain part j which is processed by
Mi�1 ði P 2Þ, it can be either good or defective as coming parts for



Fig. 5. Valve shell.

(a) CXT-420 turning machine    (b) fixture  (c) turning process 

Fig. 6. Experimental setup of manufacturing process.

Modular fixture
OP10 OP20 OP30 OP40 OP50

Modular fixture

Fig. 7. Manufacturing process of valve shell.

Table 1
The manufacturing process with five stages.

Stage Clamping method Machining feature

OP10 B, 4-jaws chuck Hole U21
Excircle U39

OP20 B downward, modular fixture (processing D) Hole U14
Hole U10

OP30 B downward, modular fixture (processing C) Hole U12
Hole U8

OP40 A, 4-jaws chuck Slot U9.6
Hole U6.5
Excircle U30

OP50 B, 4-jaws chuck Slot U26
Slot U14
Hole U8
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the following stage Mi. And it may be processed after a good part or
a defective one in Mi. After processing, in terms of a good or defec-
tive coming part, there exist four possible statuses for part j at Mi,
respectively.

(1) The previous part ðj� 1Þ, processed by Mi, is good and j is
also good.

(2) The previous part ðj� 1Þ, processed by Mi, is good but j is
defective.

(3) The previous part ðj� 1Þ, processed by Mi, is defective but j is
good.

(4) The previous part ðj� 1Þ, processed by Mi, is defective and j
is also defective.

When coming parts are good, the proportion of statue (2) repre-
sents transition probability a1 of M1 or ci of Mi ði P 2Þ. And the pro-
portion of statue (3) equals to b1 of M1 or li of Mi ði P 2Þ. When
coming parts are defective, proportions of (2) and (3) would be
taken as gi and hi, respectively.



Fig. 10. Pðg3Þ changes corresponding to changes of parameters.

Fig. 9. Estimated probabilities of producing good product through the five-stage
system.
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5.2. Results and analysis

The characteristics of the five dependent stages on the factory
floor are presented in Fig. 8(a)–(e) in the form of quality failure
probabilities and quality repair probabilities. All the probabilities
are based on historical processing data.

As we can see, a1 ¼ 0:05; b1 ¼ 0:9; ci ¼ ½0:05;0:1;0:05;0:05�;
li ¼ ½0:8;0:8;0:9;0:9�;gi ¼ ½0:5;0:5;0:4;0:5�; hi ¼ ½0:4;0:3;0:2; 0:4�.
According to the proposed model, the quality of the product
through the MMSs is obtained and shown in Fig. 9.

The final probability of producing good product estimated from
the model is 89.07% and the actual final quality based on historical
data is 89.43%, and the difference is 0.36%. The result proves the
effectiveness and practicability of the model.

The quality changes after each stage are calculated as follows:

DPðg1Þ ¼ Pðg1Þ � Pðg2Þ ¼ 3:38% ð40Þ

DPðg2Þ ¼ Pðg2Þ � Pðg1Þ ¼ �3:38% ð41Þ

DPðg3Þ ¼ Pðg3Þ � Pðg2Þ ¼ �6:51% ð42Þ

DPðg4Þ ¼ Pðg4Þ � Pðg3Þ ¼ 3:40% ð43Þ

DPðg5Þ ¼ Pðg5Þ � Pðg4Þ ¼ 0:82% ð44Þ

As DPðg3Þ has the most negative value, stage OP30 is the quality
bottleneck stage. Then the monotonicity and sensitivity analysis is
needed to find out how the changes of parameters affect quality
Pðg3Þ and which one brings the largest improvement to OP30. In
this case, c3;l3;g3, and h3 are increased or decreased by given per-
centages. Specifically, they are modified by �10%;�15% and
�20%, respectively. The quality Pðg3Þ corresponding to these
changes are shown in Fig. 10. The sensitivities with respect to
the four parameters at 10% are Sc3

¼ 10:39%, Sl3
¼ 12:98%,

Sg3
¼ 4:6%, Sh5 ¼ 0:71%, respectively.
We have made some changes of three parameters in the system

including modifying the cutter compensation of OP30, changing
cutting speed and feed speed. However, because of the complexity
of data collection and the limitation of actual production condi-
tions, the changes of other parameters cannot be obtained from
real data and are based on numerical simulation. The quality
changes are consistent with the results of the proposed model.

According to the analysis, some findings can be obtained:
g1 d10.95 0.1
g20.950.5

(a) (b) 

g4 d40.95 0.10.6 0.8
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Fig. 8. Transition diagrams o
(1) The monotonic properties of Pðg3Þ hold, which is in accor-
dance with Theorem 1. The quality will be improved when
quality failure probabilities of M3 decrease or the quality
repair probabilities of M3 increase.

(2) With the proposed model, the quality bottleneck stage and
parameter can be identified. In this case, OP30 is the quality
bottleneck stage because quality has the largest decline at it.
In sensitivity analysis of the quality bottleneck stage, we
have Sl3

> Sc3
> Sg3

> Sh5 . As a result, in terms of
stageOP30, the quality is pretty sensitive to the quality
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failure probability with good coming parts l3, which is the
quality bottleneck parameter according to the definition.
Proper changes of l3 can bring the largest improvement to
Pðg3Þ and keep it from being a quality bottleneck stage.

5.3. Comparison with other models

5.3.1. Comparison with the general Markov model
The first model we compare with is the general Markov model

proposed by Li and Huang (2007) which ignores the quality of
coming parts. In general Markov model, Li and Huang (2007)
assumed that ‘‘each stage is independent’’ and ‘‘downstream stages
could not correct defects introduced by upstream stages’’. So in the
general model, there are only two other than four parameters for
each downstream stage: quality failure probabilities k0i and quality
repair probabilities l0i. In order to compare the general model with
the proposed one, we first estimate parameters k0i and l0i based on
current parameters a1; b1; ci;li;gi and hi. Below is the estimation
procedure.

Step 1: Define Mði; jÞ as the quality state of product j after stage i
ði ¼ 1;2;3;4;5Þ. Mði; jÞ has two possible values 0 and 1, denoting
defective and good states respectively.

Step 2: Randomly generate numbers within interval [0,1].
Comparing these numbers with the corresponding transition prob-
abilities and determine the value of Mði; jÞ. Taking the first stage as
an example, if the quality of product j is good which means
Mð1; jÞ ¼ 1 and the generated number is larger than a1, then the
next product jþ 1 is also good which implies Mð1; jþ 1Þ ¼ 1.
Similarly if Mð1; jÞ ¼ 0 and the generated number is larger than
1� b1, then Mð1; jþ 1Þ ¼ 1.

Step 3: Let j increase from 1 to 10,000 to simulate the produc-
tion process of 10,000 products. Record the values of Mði; jÞ and
calculate the transition probabilities k0i and l0i based on their defi-
nitions. k0i is the proportion that Mði; jÞ is good while Mði; jþ 1Þ is
defective. l0i is the proportion that Mði; jÞ is defective while
Mði; jþ 1Þ is good.

Step 4: Repeat step 1–3 for 10,000 times and calculate the aver-
age values of k0i and l0i.

Following this procedure, the quality failure probabilities k0i and
quality repair probabilities l0i are modified from a1; b1; ci;li;gi; hi.
Repeating the procedure for 10 times and the means and variances
of k0i and l0i are shown in Table 2.

Then k0i and l0i are estimated as k0i ¼ ½0:05;0:07; 0:13;
0:10;0:09�;l0i ¼ ½0:90; 0:77;0:74;0:75;0:81�. Under this circum-
stance, according to Eq. (3.34) in Li and Huang (2007), the probabil-
ity of producing good product calculated by the general Markov
Table 2
Means and variances of k0i and l0i .

Number of
experience

k01 k02 k03 k04 k05

1 0.0502 0.0726 0.1316 0.1004 0.0934
2 0.0500 0.0732 0.1319 0.1005 0.0938
3 0.0503 0.0737 0.1325 0.1010 0.0936
4 0.0502 0.0727 0.1324 0.1004 0.0933
5 0.0501 0.0731 0.1323 0.1002 0.0937
6 0.0501 0.0732 0.1318 0.1001 0.0933
7 0.0501 0.0731 0.1319 0.0999 0.0934
8 0.0500 0.0732 0.1323 0.0998 0.0933
9 0.0499 0.0734 0.1320 0.1001 0.0933

10 0.0504 0.0735 0.1319 0.1002 0.0936

Mean 0.0501 0.0732 0.1321 0.1003 0.0935
Variance 2.2333E�08 1.1122E�07 8.7111E�08 1.1600E�07 3.5667
model is 70.6%, which shows a great difference with the actual
final quality of 89.43%.

The result shows that for MMSs where the quality propagation
exists, the general Markov model fails to describe its quality char-
acteristics while the model proposed in this paper has higher accu-
racy on the evaluation of quality performance.

5.3.2. Comparison with the modified quality flow model
From Section 2.5, we know that the Markov model proposed in

this paper is quite different from the quality flow model developed
by Ju et al. (2014). Despite of this, we try to do some comparisons
between the results of them by adding two assumptions including:

(1) In the quality flow model of Ju et al. (2014), the state of good
state after repair is equivalent to the state of good state
without repair.

(2) In the Markov model proposed in this paper, the final quality
is only related to the quality of the coming parts and has
nothing to do with the state of stages.

Based on these assumptions, the estimation procedure is as
follows.

Step 1 and Step 2 are same with those in Section 5.3.1.
Step 3: Let j increase from 1 to 10,000 to simulate the produc-

tion process of 10,000 products. Record the values of Mði; jÞ and
calculate the transition probabilities k00i ; m00i and l00i based on their
definitions. k00i and m00i are the proportion that Mði; jÞ is good while
Mðiþ 1; jÞ is defective. l00i is the proportion that Mði; jÞ is defective
while Mðiþ 1; jÞ is good.

Step 4: Repeat step 1–3 for 10,000 times and calculate the aver-
age values of k00i ; m00i and l00i .

Following this procedure, we can estimate the parameters k00i ;l00i
and m00i needed in the quality flow model from a1; b1; ci;li;gi; hi in
the case. Repeating the procedure for 10 times and the means
and variances of k00i ðm00i Þ and l00i are shown in Table 3.

The results are k00i ¼ m00i ¼ ½0:05;0:08;0:15;0:11;0:10� and
l00i ¼ ½0:95;0:89;0:79;0:84;0:83�. Under this circumstance, accord-
ing to Eq. (23) in Ju et al. (2014), the probabilities of producing
good product estimated from the quality flow model is 89.02%,
which is almost the same as the result from the proposed
Markov model 89.07%. And it is also very close to the actual final
quality 89.43%. So both the two models are highly accurate. But
as stated in Section 2.5 and earlier in this section, the quality flow
model cannot be applied to MMSs with RQIF directly and some
assumptions must be added. This means the model proposed in
this paper can be well applied to the MMSs with RQIF and keeps
a high level of accuracy.
l01 l02 l03 l04 l05

0.9031 0.7706 0.7415 0.7527 0.8124
0.9004 0.7740 0.7411 0.7517 0.8126
0.9013 0.7723 0.7412 0.7526 0.8101
0.9033 0.7718 0.7422 0.7520 0.8126
0.9022 0.7705 0.7421 0.7527 0.8101
0.9040 0.7700 0.7401 0.7513 0.8105
0.9029 0.7692 0.7411 0.7510 0.8129
0.9018 0.7733 0.7441 0.7518 0.8117
0.9017 0.7698 0.7401 0.7477 0.8111
0.9013 0.7706 0.7418 0.7518 0.8098

0.9022 0.7712 0.7415 0.7515 0.8114
E�08 1.2244E�06 2.4921E�06 1.3357E�06 2.1423E�06 1.4507E�06



Table 4
Comparison results of the three methods.

Methods General Markov model (Li & Huang, 2007) Quality flow model Ju et al. (2014) Markov model of this paper

Basic system assumptions (1) Stages are independent (1) Every stage has inspection and repair
stations

(1) Stages are dependent and the
inspection is at the end stage

(2) Only the states of stages are considered.
The quality of coming parts is not
considered

(2) Only the quality of coming parts is
considered. The states of stages are not
considered

(2) Both the quality of coming parts
and the states of stages are
considered

Probabilities of producing good
product

70.6% 89.02% 89.07%

Difference with the actual final
quality

18.83% 0.41% 0.36%

Table 3
Means and variances of k00i ðm00i Þ and l00i .

Number of experience k001ðm001Þ k002ðm002Þ k003ðm003Þ k004ðm004Þ k005ðm005Þ l001 l002 l003 l004 l005

1 0.0526 0.0810 0.1490 0.1101 0.1013 0.9474 0.8940 0.7881 0.8382 0.8324
2 0.0526 0.0803 0.1485 0.1093 0.1017 0.9474 0.8926 0.7913 0.8376 0.8312
3 0.0526 0.0801 0.1486 0.1089 0.1006 0.9474 0.8918 0.7896 0.8389 0.8331
4 0.0526 0.0795 0.1491 0.1096 0.1010 0.9474 0.8935 0.7888 0.8383 0.8306
5 0.0526 0.0800 0.1488 0.1094 0.1010 0.9474 0.8940 0.7882 0.8388 0.8323
6 0.0526 0.0807 0.1494 0.1095 0.1013 0.9474 0.8924 0.7900 0.8381 0.8321
7 0.0526 0.0804 0.1491 0.1101 0.1019 0.9474 0.8927 0.7876 0.8384 0.8317
8 0.0526 0.0800 0.1492 0.1093 0.1006 0.9474 0.8933 0.7890 0.8392 0.8330
9 0.0526 0.0806 0.1491 0.1093 0.1011 0.9474 0.8938 0.7896 0.8396 0.8301

10 0.0526 0.0799 0.1488 0.1100 0.1014 0.9474 0.8906 0.7894 0.8376 0.8315

Mean 0.0526 0.08025 0.14896 0.10955 0.10119 0.9474 0.89287 0.78916 0.83847 0.8318
Variance 0.000E+00 1.939E�07 7.822E�08 1.606E�07 1.788E�07 0.000E+00 1.180E�06 1.152E�06 4.290E�07 9.578E�07
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All of the comparison results are listed in Table 4 and some con-
clusions can be drawn.

1. For the MMSs with RQIF, the general Markov model shows a
low accuracy with an error of 18.83%. But the model proposed
in this paper can well describe the quality characteristic of
the system with an error of only 0.36%.

2. Although the quality flow model can be modified to estimate
the final quality and has a small error of 0.41%, it is not pro-
posed for MMSs with RQIF. It require that the system has a
repair station after every stage. As stated in Section 2.5, the
quality flow model fails to consider quality corrections by the
system itself and cannot be applied to MMSs with RQIF directly.

In a word, the Markov model proposed in this paper are just
meant for MMSs with RQIF and has high accuracy.
6. Conclusion

In this paper, a novel Markov model is developed to analyze
quality propagation in MMSs with RQIF. In addition to deriving
the analytical formulas to evaluate the final product quality, the
monotonic properties are also investigated. It is shown that the
monotonic properties of final quality in terms of quality failure
probabilities and quality repair probabilities are not always the
same as we expected. Based on the proposed model, a quality bot-
tleneck identification method is explored. Finally, a case study is
illustrated to show the effectiveness and practicability of the
model. And it is also compared with the general Markov model
and modified quality flow model, which shows that the proposed
model is well applicable for MMSs with ROIF and has high accu-
racy. Further research opportunities can be focused on extending
this proposed Markov model in MMSs which can produce multiple
types of products and enabling the model to be applicable for
multi-product multi-stage manufacturing systems.
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Appendix A

Proof of Eq. (12):
From Eq. (10), we have

Pðg1g2Þ ¼ ð1� a1Þð1� c2ÞPðg1g2Þ þ b1ð1� g2ÞPðd1g2Þ
þ ð1� a1Þl2Pðg1d2Þ þ b1h2Pðd1d2Þ ðA:1Þ

Pðd1g2Þ ¼ a1ð1� c2ÞPðg1g2Þ þ ð1� b1Þð1� g2ÞPðd1g2Þ
þ a1l2Pðg1d2Þ þ ð1� b1Þh2Pðd1d2Þ ðA:2Þ

Pðg1d2Þ ¼ ð1� a1Þc2Pðg1g2Þ þ b1g2Pðd1g2Þ
þ ð1� a1Þð1� l2ÞPðg1d2Þ þ b1ð1� h2ÞPðd1d2Þ ðA:3Þ

Pðd1d2Þ ¼ a1c2ðPðg1g2Þ þ ð1� b1Þg2Pðd1g2Þ
þ a1ð1� l2ÞPðg1d2Þ þ ð1� b1Þð1� h2ÞPðd1d2Þ ðA:4Þ

From Eq. (A.1), we have

Pðd1d2Þ ¼
1

b1h2
f½1� ð1� a1Þð1� c2Þ�Pðg1g2Þ

� b1ð1� g2ÞPðd1g2Þ � ð1� a1Þl2Pðg1d2Þg ðA:5Þ
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Substituting (A.5) into (A.2) leads to
Pðg1d2Þ ¼
f½1� ð1� b1Þð1� g2Þ�b1h2 þ ð1� b1Þh2b1ð1� g2ÞgPðd1g2Þ � f½1� ð1� a1Þð1� c2Þ�ð1� b1Þh2 þ b1h2a1ð1� c2ÞgPðg1g2Þ

a1l2b1h2 � ð1� a1Þl2ð1� b1Þh2
ðA:6Þ
Substituting (A.6) into (A.5), we obtain
Pðd1d2Þ ¼
fð1� a1Þl2a1ð1� c2Þ þ a1l2½1� ð1� a1Þð1� c2Þ�gPðg1g2Þ � fð1� a1Þl2½ð1� ð1� b1Þð1� g2Þ� þ a1l2b1ð1� g2ÞgPðd1g2Þ

a1l2b1h2 � ð1� a1Þl2ð1� b1Þh2

ðA:7Þ
Rewriting (A.3), we have

½1� ð1� a1Þð1� l2Þ�Pðg1d2Þ ¼ ð1� a1Þc2Pðg1g2Þ þ b1g2Pðd1g2Þ
þ b1ð1� h2Pðd1d2Þ ðA:8Þ

Then substituting (A.6) and (A.7) into (A.8), we can solve Pðd1g2Þ
with respect to Pðg1g2Þ

Pðd1g2Þ ¼
W2

W1
Pðg1g2Þ ðA:9Þ

where

W1 ¼ ½1� ð1� a1Þð1� l2Þ�f½1� ð1� b1Þð1� g2Þ�b1h2

þ ð1� b1Þh2b1ð1� g2Þg � b1g2½a1l2b1h2

� ð1� a1Þl2ð1� b1Þh2� þ b1ð1� h2Þ
� fð1� a1Þl2½1� ð1� b1Þð1� g2Þ� þ a1l2b1ð1� g2Þg

W2 ¼ ð1� a1Þc2½a1l2b1h2 � ð1� a1Þl2ð1� b1Þh2�
þ b1ð1� h2Þfð1� a1Þl2a1ð1� c2Þ
þ a1l2½1� ð1� a1Þð1� c2Þ�g þ ½1� ð1� a1Þð1� l2Þ�
� f½1� ð1� a1Þð1� c2Þ�ð1� b1Þh2 þ b1h2a1ð1� c2Þg

By substituting Eqs. (A.6) and (A.7) to Eq. (11), and combining with
Eq. (A.9), we can solve the four steady-state probabilities
Pðg1g2Þ; Pðd1g2Þ; Pðg1d2Þ; Pðd1d2Þ.

According to Eq. (12), the final quality

Pðg2Þ ¼ Pðg1g2Þ þ Pðd1g2Þ ¼
A

Aþ B
ðA:10Þ

where

A¼ ½c2ð1�a1Þ�b1g2�½a1l2b1h2�l2h2ð1�a1Þð1�b1Þ�
þ ½1�ð1�b1Þð1�g2Þþa1ð1�c2Þ�fb1h2½1�ð1�a1Þð1�l2Þ�
þb1l2ð1�h2Þð1�a1Þgþ ½1�ð1�a1Þð1�c2Þ
þb1ð1�g2Þ�fh2ð1�b1Þ½1�ð1�a1Þð1�l2Þ�þb1a1l2ð1�h2Þg

B ¼ ½b1h2 � l2ð1� a1Þ�fc2ð1� a1Þ½1� ð1� b1Þð1� g2Þ�
þ a1b1g2ð1� c2Þg � ½a1l2 � h2ð1� b1Þ�
� fb1g2½1� ð1� a1Þð1� c2Þ� þ c2b1ð1� a1Þð1� g2Þg
þ f½1� ð1� a1Þð1� c2Þ�½1� ð1� b1Þð1� g2Þ�
� a1b1ð1� c2Þð1� g2Þg½1� ð1� a1Þð1� l2Þ þ b1ð1� h2Þ� �
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