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a b s t r a c t

Though traditional control charts have been widely used as effective tools in statistical process control

(SPC), they are not applicable in many industrial applications where the process variables are highly

auto-correlated. In this study, one new minimal Euclidean distance (MED) based monitoring approach

is proposed for enhancing the monitoring mean shifts of auto-correlated processes. Support vector

regression (SVR) is used to predict the values of a variable in time series. Through calculating minimal

Euclidean distance (MED) values over time series, a novel MED chart is developed for monitoring mean

shifts, and it can provide a comprehensive and quantitative assessment for the current process state.

The performance of the proposed MED control chart is evaluated based on average run length (ARL).

Simulation experiments are conducted and one industrial case is illustrated to validate the effective-

ness of the developed MED control chart. The analysis results indicate that the developed MED control

chart is more effective than other control charts for small process mean shifts in auto-correlated

processes, and it can be used as a promising tool for SPC.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The ability to monitor and reduce process variation for cost
reduction and quality improvement in industrial processes plays a
critical role in the success of one enterprise in today’s globally
competitive marketplace (Montgomery, 2001; Wu et al., 2007;
Du et al., 2008; Lee et al., 2012). Control charts have been widely
used as effective tools in statistical process control (SPC) for
monitoring the process variation in industrial applications. In
particular, control charts for monitoring independent observations
have been extensively investigated and applied (Alt, 1984; Mason
et al., 1995; Aparisi and Haro, 2003; Yang and Rahim, 2005; Torng
et al., 2009; Magalh~aesa et al., 2009; Wu et al., 2009; Du and Xi,
2010; Ou et al., 2011; Costa and Machado, 2011). With tremendous
growth of advanced automatic data inspection and measurement
techniques during the past few years, the process variables are being
collected automatically at higher rates, therefore, for many indus-
trial applications, a basic statistical assumption of independence is
often violated, i.e. the data collected at regular time intervals from
the processes is serially auto-correlated (Montgomery and
Friedman, 1989; Cook and Chiu, 1998).

Several attempts have been made to extend traditional SPC
techniques to deal with auto-correlated processes. One of the most
ll rights reserved.
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interesting approaches to SPC for auto-correlated processes was
proposed by Alwan and Roberts (1988). They introduced two charts,
which they referred to as the common-cause control chart (CCC) and
the special-cause control chart (SCC). CCC is a plot of forecasted
values that are determined by fitting the correlated process with an
autoregressive moving average model (ARMA), and SCC is a tradi-
tional Shewhart chart of the residuals. Their work attracted further
investigation on time series modeling techniques application for
monitoring correlated processes (Montgomery and Friedman, 1989;
Montgomery and Mastrangelo, 1991; Wardell et al., 1992, 1994;
Schmid, 1997; Adams and Tseng, 1998; Timmer et al.,1998; Jiang
et al., 2000; Wright et al., 2001; Orlando et al., 2002; Kalgonda and
Kulkarni, 2004). The time series based control charts approaches
essentially involve fitting an adequate time series model to the
correlated process data and applying a traditional control chart to
the stream of residuals from the time series model. All these control
chart approaches have been shown to improve the monitoring
performance in the presence of auto-correlation. However, these
time series modeling techniques require that a strict model has been
identified for the time series of process observations before
residuals can be obtained (Hwarng, 2004), and their performance
is not very good for monitoring small shifts (Wardell et al., 1994),
and they require one to have some skill in time series analysis
(Box et al., 1994). Therefore, some other control charts based
on residual have been developed for enhancing the performance
of monitoring correlated processes (Testik, 2005; Pan and Jarrett,
2007).
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Recently, some researchers tried to find alternative methods that
allow less restrictive assumptions, more flexibility and adaptability
to real data situations. Examples of such techniques are machine
learning methods such as neural network (NN) and support vector
machine (SVM). These techniques allow learning the specific struc-
ture directly from the data and can be applied without forcing any
assumptions. Some authors have proposed NN approaches as
effective tools for monitoring auto-correlated processes (Cook and
Chiu, 1998; Cook et al., 2001; Zobel et al., 2004; Hwarng, 2005;
Pacella and Semeraro, 2007; Jamal et al., 2007; Du and Xi, 2011).

Support vector machine (SVM) has recently become a new
generation learning system based on recent advances on statis-
tical learning theory for solving a variety of learning, classification
and prediction problems (Cortes and Vapnik, 1995; Gunn, 1998;
Cristianini and Shawe-Taylor, 2000; Deng and Yeh, 2011). SVMs
calculate a separating hyperplane that maximizes the margin
between data classes to produce good generalization abilities. The
main difference between NNs and SVMs is in their risk minimiza-
tion (Gunn, 1998). In case of SVMs, structural risk minimization
principle is used to minimize an upper bound based on an
expected risk, whereas in NNs, traditional empirical risk mini-
mization is used to minimize the error in the training of data. The
difference in risk minimization leads to a better generalization
performance for SVMs than NNs (Gunn, 1998). Support vector
regression (SVR) is an important extension of SVM and is a
regression method by introduction of an alternative loss function
(Vapnik, 1998).

The applications of SVM to monitor the process variation are
spare. Chinnam (2002) demonstrated that SVM can be extremely
effective in minimizing both type I and type II errors for detecting
shifts in the auto-correlated processes, and performed as well or
better than traditional Shewhart control charts and other machine
learning methods. Sun and Tsung (2003) and Kumar et al. (2006)
developed one kernel-distance based K-chart using support vector
for monitoring the independent observations. Issam and Mohamed
(2008) presented SVR based cumulative sum (CUSUM) control
chart for auto-correlated process. In their approach, SVR is firstly
calculated and then CUSUM is applied to the stream of residuals
from SVR. Therefore, two methods including SVR and CUSUM need
to be calculated in their approach.

In this paper, one new minimal Euclidean distance (MED)
based control chart is developed as a promising tool for monitor-
ing auto-correlated processes. SVR is used to predict the values of
a variable in time series. By using MED, the quantization error is
provided for quantifying the deviation degree of current process
with in-control process state space. Depending on how far away
the current process is deviating from the in-control process state,
a quantitative assessment index can be obtained by calculation of
the MED of the new measurement data to the SVR trained by in-
control process datasets.

The rest of this paper is organized as follows. The SVR theory is
reviewed briefly in Section 2. The methodology using the pro-
posed MED chart for monitoring auto-correlated processes is
developed in Section 3. Experiments and performance analysis
of the MED chart are conducted based on average run length
(ARL) in Section 4. Further analysis of MED chart and one
industrial application is illustrated to validate the effectiveness
of the MED chart in Sections 5 and 6, respectively. A procedure for
applying the MED chart into real processes is presented in Section
7. Finally, the conclusions and future work are given in Section 8.
2. Brief review of SVR

This section provides a brief review of SVR formulation. Con-
sider a training data set ðx1,y1Þ,ðx2,y2Þ,. . .,ðxN ,yNÞ

� �
i¼ 1,2,. . .,N,
where N is the total number of training vectors, xiARdCR is the ith
d-dimensional input vector, and yiA{1, �1} is known target. The
standard form of support vector regression (Vapnik, 1998) is:

min
w,b,x,xn
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where w is the vector of hyperplane coefficients, defining
a direction perpendicular to the hyperplane, the index i labels
the N training cases, xi and xn

i are slack variables, measuring the
degree of misclassification of the sample xi, C is the error penalty
factor, penalizing the non-zero xi, the bias b is a scalar, representing
the bias of the hyperplane, the parameter e is the e-insensitive loss,
and the map function f is a non-linear transformation to map the
input vectors into a high-dimensional feature space.

Eq. (2) corresponds to dealing with a called e-insensitive loss
function 9x9e, which is one of most important loss functions
(Vapnik, 1998). After transforming the problem to the dual form
using Lagrangian transformation and applying optimality condi-
tions, the following optimization problem is obtained:

min
a,an

1

2
ða�anÞ

T Q ða�anÞþe
XN

i ¼ 1

ðaiþan

i Þþ
XN

i ¼ 1
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where Qij¼K(xi,xj)¼f(xi)
Tf(xj), and ai and an

i are the Lagrange
multipliers.

The estimated approximate function f̂ is:

f̂ w,bðxÞ ¼
XN

i ¼ 1

ðâi�â
n

i ÞKðxi,xÞþb ð5Þ

where K(xi,x) is kernel function.
Any function that satisfies Mercer’s theorem (Cristianini and

Shawe-Taylor, 2000) can be used as a kernel function. Some
popular SVM kernel functions include:

linear function : Kðxi,yjÞ ¼ xi � yj ð6Þ

Gaussian radial basis function ðGRBFÞ :

Kðxi, yjÞ ¼ expð�g99xi�yj99
2
Þ ð7Þ

polynomial function with degree d :

Kðxi,yjÞ ¼ ððxi � yjÞþtÞd tg0 ð8Þ
3. Methodology

Among various out-of-control conditions, this study is con-
cerned with process mean shifts, which are defined as unantici-
pated sudden shifts in process mean vector. The primary possible
causes for the mean shifts result from the introduction of new
workers, machines or methods, a change in the measurement
method or standard, etc.

3.1. MED chart based on SVR

In general, the in-control operation datasets are relatively
easier to acquire, but it is hard to obtain lots of out-of-control
datasets. Out-of-control state detection can be implemented
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based on the residual between the in-control state and current
state. Large residual indicates that the current process is out of
the in-control operation state.

Muller et al. (1997) introduced SVR in time series prediction
and found that it provides excellent results comparing to NN.
Thissena et al. (2003) also showed that for complex time series
structures SVR outperforms ARMA and NN models. Therefore, this
study uses SVR to predict the value of a variable, and then the
residual is calculated for quantifying the deviation degree of the
current process with the in-control operation state. At first, SVR is
trained with the in-control process data, and then the residual
vector is obtained by calculating the difference between the
predicted values and the observed values of the current process
variable. For in-control operation state, the mean vector of the
residuals is zero, whereas, for out-of-control state, a shift in the
mean vector is reflected in the mean of the residual vector. If
the difference between the input vector and the in-control vector
is larger than a predetermined control limit, the current process is
probably out-of-control.

According to the distance between the current process state
and the in-control process state, a quantitative assessment index
can be obtained by calculating the MED of the measurement data
of current state to the SVR trained by training data sets from
in-control process. The MED value is calculated by equation:

MED¼ 99M�SVRin-control99 ð9Þ

where 99�99 presents minimal Euclidean distance, M means the
data within the moving window (i.e., the moving window vector),
and SVRin-control is the predicted value of SVR trained by the data
sets from in-control state.

From the out-of-control monitoring of view, the distance
between the SVRin-control and the input vector actually represents
how far away the input vector deviates from the in-control process
state. An extremely high MED value, i.e., exceeding the control limit
value, means that the input vector belongs to an out-of-control class.
Therefore, the process changes can be quantified and visualized by
following the trends of MED. These MED values over time series
form an MED chart that is used for monitoring processes.
3.2. Selection of kernel function

The prediction performance of SVR varies depending on the
choice of the kernel function and its parameters. Therefore, one
suitable kernel function should be first selected for implementing
SVR. The choice of kernel functions is highly problem-dependent
and it is the important factor in SVR applications. There are
usually two non-linear kernel functions for nonlinear SVM includ-
ing the GRBF and the polynomial function (see Eqs. (7) and (8)).

To take advantage of merits of two non-linear kernel functions,
one hybrid kernel function Khybrid(xi,xj) combining GRBF and
polynomial kernel in a generalized kernel form is presented in
this study.

Khybridðxi,xjÞ ¼ b� expð�g99xi�yj99
2
Þþð1�bÞððxi � yjÞþ1Þd ð10Þ

The parameter g and d represents kernel width and degree,
and b is coefficient. Since Khybrid still satisfy Mercer’s condition,
it can be used as a kernel function for SVR. For instance, one case
of the kernel of degree 2, width 0.5, and b 0.5 is presented:

Khybrid ¼ 0:5� exp ð�299x1�x01þx2�x0299
2
Þþ0:5ð1þ2x1x01

þ2x2x02þ2x1x2x01x02þðx1x01Þ
2
þðx2x02Þ

2
Þ

3.3. Optimization of kernel function parameters

For Khybrid(xi,xj) kernel, three parameters, including penalty
parameter C, kernel width g and degree d, need to be optimized in
order to obtain the best prediction result. It is widely reported
that the particle swarm optimization (PSO) algorithm is very easy
to implement and has fewer parameters to adjust when compared
to other evolutionary algorithms (Eberhart and Kennedy, 1995).
In this study, PSO technique is used to obtain an optimal subset of
parameters.

It is an iterative process in which the change in weights of a
particle at the beginning of an iteration are calculated using
Eq. (11) and new position of every particle is found using Eq. (12).

viðjþ1Þ ¼wpviðjÞþc1r1ðpid�xiðjÞÞþc2r2ðpgd�xiðjÞÞ ð11Þ

xiðjþ1Þ ¼ xiðjÞþviðjþ1Þ ð12Þ

where j is the current step number, wp is the inertia weight, c1 and
c2 are the acceleration constants, r1 and r2 are two random
numbers in the range [0,1], xi(j) is the current position of the
particle, pid is the best one of the solutions this particle has
reached, pgd is the best one of the solutions all the particles have
reached.

3.4. Data presentation of auto-correlated process

How to represent the data is very critical for the MED chart.
Auto-regressive processes of lag 1 (i.e. AR(1)) are very popular in
many processes. Auto-regression is a form of regression as the
value of a particular variable is dependent on the part variable of
itself at varying time lags. An AR(1) to model process mean shifts
can be represented by:

XðtÞ ¼ mþF� ðXðt�1Þ�mÞþuðtÞ ð13Þ

where X(t) and X(t�1) are the values of time series at time t and
t�1, respectively, m is the mean of the data series, F is the auto-
regressive coefficient ranged within [�1,1], and u(t) is a normal
independently distributed error.

If the process mean is shifted d at time point t, the process can
be represented by

XðtÞ ¼ dþXðt�1Þ ð14Þ

The time when a step shift occurs is called the point of shift.
Thus, d is the expected difference between the shifted value of
X(t) and non-shifted value of X(t�1). The model represented in
Eqs. (13) and (14) are consistent with the AR(1) model considered
in Zhang (1998), the ARMA (1,1) model with y1¼0 in Wardell
et al. (1992, 1994) and Jiang et al. (2000).

3.5. Generation of data sets

As for training and testing datasets of the MED chart, a moving
window method with n observation points over a time series
stream is used for data presentation. The window size greatly
affects the monitoring performance of MED chart. A small
window size is able to detect out-of-control signals more quickly,
but might result in a short in-control ARL0, which is equivalent to
a high type I error. A large window size is able to potentially
provide more required data for identification of out-of-control
signals, but reduce the detection efficiency by increasing the time
required to detect these signals (i.e. longer out-of-control ARL1 or
high type II error). Therefore, a compromise size to balance type I
and type II errors needs to be found. Preliminary investigations
have been conducted to choose a suitable size of moving window
(discussed in Section 4.2.2). A window size of 16 was selected in
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this study since there would be no significant improvement
beyond these values during training stage.

Only in-control moving window vectors are used for training
the SVR. Once an SVR (i.e. SVRin-control) is created and trained, the
measurement window vectors are fed to the SVRin-control to output
the MED values. According to these MDE values, the state of
current processes is observed and determined. The process starts
in in-control state, and then is shifted d away from the current
process mean. Using Eq. (13), the test moving window vectors for
each shift were generated. After the first shifted point enters into
the moving window, the MED value will increase gradually as
more shifted points enter into the moving window. These MED
values of all the windows are plotted over time series stream,
which form the MED chart. This datasets generation approach is
considered as being more practical because in the real-world
problems out-of-control signal often occurs after a period in
which the process is in-control and the starting point of the
out-of-control signal is usually unknown.

Shift signals are added to the auto-correlated process model to
provide out-of-control signals (see Eq. (14)). Process shifts
d¼0.0,0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 were considered (when d
equals 0, the process is in control). Each d value is used in turn
during the simulation of the out-of-control status (when d equals
0, the process is in control) and has the same chance to be picked
up. Without loss of generality, suppose that in-control process
variable has mean m zero and variance s2 one. The same number
of moving window vectors was generated for each parameter F.
3.6. Evaluating normality

The assumption of normality for quality characteristic variable
usually needs to be checked. Plots are always useful tools in data
processing. For univariate process, special plots called Q–Q plots
can be used to assess the assumption of normality. When the
points lie very nearly along a straight line, the normality assump-
tion remains tenable. Normality is suspect if the points deviate
from straight line.

In practice, the normality of data set may not be a viable
assumption. One important way to handle this situation is to
transform the non-normal data to near normality. Transformation
is a re-expression of the data set in different units. For instance,
when a histogram of positive observations exhibits a long right
hand tail, transforming the observations by taking their loga-
rithms or square roots will often markedly improve the symmetry
about the mean and the approximation to a normal distribution.

Different methods for transformations have been developed,
which can be divided into several classes according to transformed
scale, such as ‘‘square roots transformation’’, ‘‘logit transforma-
tion’’, ‘‘Fisher’s z-transformation’’, and ‘‘power transformation’’.
Among these transformations, the ‘‘power transformation’’ is a
very useful transformation method. Box and Cox (1964) modified
the transformation method,

xðlÞ ¼
xl�1
l la0

lnx l¼ 0

(
ð15Þ

which is continuous in l for x40.
Given the observations x1,x2,. . .,xn, the solution for the choice

of an appropriate power l is the solution that maximized
the expression

‘ðlÞ ¼�
n

2
ln

1

n

Xn

j ¼ 1

ðxðlÞj �xðlÞÞ2

2
4

3
5þðl�1Þ

Xn

j ¼ 1

lnxj ð16Þ
xðlÞj is defined in (4) and

xðlÞ ¼
1

n

Xn

j ¼ 1

xðlÞj ¼
1

n

Xn

j ¼ 1

xlj �1

l

 !
ð17Þ

is the arithmetic average of the transformed observations. The
first term in (16) is, apart from a constant, the logarithm of a
normal likelihood function, after maximizing it with respect to
the population mean and variance parameters.

The calculation of ‘ðlÞ for many values of l is an easy task for
computer. It is helpful to have a graph of ‘ðlÞ versus l, as well as a
tabular display of the pairs ðl,‘ðlÞÞ, in order to study the behavior
near the maximizing value l̂. For instance, if either l¼0(logarithm)
or l¼0.5(square root) is near l̂, one of these may be preferred
because of its simplicity.

Through using this procedure, the non-normal data set can be
transformed to near normality.

3.7. Control limit for MED chart

After the measurement window vector of current process is
fed to the SVRin-control trained on in-control datasets, an MED value
is obtained that represents the deviation degree of current
process with the in-control process state. When a shift d occurs
in a process, the MED chart would identify that there is a shift as
soon as possible, which can be realized by computing the MED
value to determine the moving window at which a shift is
indicated. Therefore, a control limit g0 should be provided to
check whether the MED value is larger than this control limit.
Namely, when an MED value exceeds the control limit g0, the
process could be in out-of-control state. Therefore, for each
performance evaluation, the system would read the moving
window one by one until the control limit g0 is reached. For
instance, if the control limit g0 is exceeded at moving window 32,
it is record that the out-of-control ARL1 is 15 (i.e., 32�17¼15,
where 17 means the previous in-control 16 window vectors).
Therefore, the proposed approach provides a convenient way to
calculate the ARL. The setting of the control limit g0 is based on
consideration of the balance between type I and type II errors.
4. Simulation and performance analysis

Some simulation experiments have been done to verify the
effectiveness of the proposed MED control chart. The influences of
the key factors of the MED chart on monitoring performance are
analyzed. The analysis can help us to obtain the suitable para-
meter setting to improve the performance of the MED control
chart. In each of the following tests, only one factor is varied while
the remaining ones are kept constant. Average run length (ARL) is
one widely accepted evaluation index to evaluate the efficacy of
monitoring and classifying out-of-control processes, which is also
used to evaluate the performance of MED charts in this study. ARL
includes two indices, in-control ARL0 and out-of-control ARL1.

4.1. Parameters of SVR

The performance of learning in SVR is influenced by its relative
parameters. The relative parameters of SVR having better perfor-
mances during training in this study are summarized as follows:
(1)
 Loss function: e-insensitive loss function is used.

(2)
 Kernel function: Khybrid(xi,xj) function in Eq. (10) is used, and

b¼0.5.

(3)
 The inertia weights: minimum weight wmin is 0.2 and max-

imum weight wmax is 0.8.
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(4)
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The speed of particles: vmax equals 4 and vmin equals �4.

(5)
 The initial velocities: the initial velocities of the initial particles

are generated at random in the range [�4,4].

(6)
 The study factors: c1 equals 2 and c2 equals 2.
4.2. Performance analysis

4.2.1. Performance analysis to the number of training examples

The number of training datasets influences the performance of
a monitoring system significantly. An SVR must be trained with
sufficient training examples in order to obtain good performance.
Insufficient training data sets might not be able to represent the
whole input–output behavior.

The datasets of different sizes with F¼0.475 and g0¼8.4598
are generated to test the MED chart. The performance of the MED
chart is evaluated as the number of training examples is increased
incrementally. Table 1 presents the test results of the MED chart
trained by different examples. From these results, some conclu-
sions can be drawn: (1) one can find that increasing the training
examples can improve the performance of the MED chart up to a
certain level of accuracy (performance limits). This could be
explained by the fact that with enough large training sets there
is a better chance of true representation of a problem space.
However, any further increase of the training size after reaching
such limits will not greatly improve the performance of the MED
chart. Moreover, the larger training set results in higher time cost
of training. Table 1 shows that no discernible improvement in
performance can be obtained when using more than 500 training
examples. Thus, training set comprising 500 examples was used
for training SVR. (2) Out-of-control signals with small magnitudes
require more representation of the density distribution by larger
training data sets. (3) Out-of-control signals with large shift
magnitudes require smaller training examples as they are easier
to identify. This is due to the fact that out-of-control signals with
large shift magnitudes have stronger pattern features that sepa-
rate easier itself with other random in-control patterns.

4.2.2. Performance analysis to different window sizes

Table 2 shows the out-of-control ARLs for different sizes
ranged between 8 and 20 observations. The results show that
increasing the window size results in improved performance of
the MED chart for detecting small shift magnitudes do2.0s.
In contrast, increasing the window size results in decreased
performance of the MED chart for detecting large shift magni-
tudes d42.0s. For example, the MED chart with window size 12
e 1
rmance analysis of the MED chart to the number of training examples.

Training examples

100 300 500 700 900

73.62 71.91 67.26 67.20 67.24

27.83 23.66 20.38 20.40 20.35

13.64 11.43 6.04 6.02 6.01

5.68 5.69 5.65 5.64 5.61

e 2
rmance analysis of the MED chart to the window sizes.

Window size

8 12 16 20

70.58 70.25 67.26 67.20

21.82 21.17 20.38 20.40

10.89 9.84 6.04 9.87

5.66 5.68 5.65 5.69
has better performance than that of the MED chart with window
size 8 when d¼0.5s, 1.0s, 2.0s, and poorer performance when
d¼3.0s. The reasons why the size of window results in different
performance for detecting small and large magnitude shifts, are
following: the large window can accommodate more shifted
points with low shift magnitudes, so that more out-of-control
pattern features can be exposed to the MED charts and the MED
value of the out-of-control window vector is easier to exceed the
control limit g0. Therefore, for detecting small shifts, the MED
chart with large window has better performance in comparison
with the MED chart with small window. Moreover, an out-of-
control signal with large magnitude shift can be detected before
shifted observation points occupy the whole moving window.
Thus, for detecting large shifts, the moving window with small
size decreases the percentage of the number of random elements
in a window vector, in contrast, increases the percentage of the
number of out-of-control elements in the window vector. Thus,
this makes the out-of-control window vector be distinctively
different from the random in-control window vector. Therefore,
the window size is one of the key factors that influents signifi-
cantly the performance of the MED chart, and should be set to
balance the out-of-control ARLs of small shifts and large shifts.
Fig. 2 also shows that the window size of 16 has the best
performance comparing to other window sizes. Thus, the window
size of 16 was used for training SVR.

4.2.3. Performance analysis to different kernel function and

parameters

Fifteen runs (500 training examples for each run) with
F¼0.475 and g0¼8.4598 have been performed to find optimal
parameters of Khybrid kernel function. PSO was applied to find the
best combination of the parameters. The related parameters C and
g were varied in the arbitrarily range [1,1000], and [0,1] so as to
cover high and small regularization of the MED chart, and fat as
well as thin kernels, respectively. The degree d was varied in the
range [2,5] with integer value in order to span polynomials with
low and high flexibility. The detailed results about the optimal
values of the SVR parameters (i.e., the penalty parameter C, kernel
width g and degree d) are shown in Table 3. From Table 3, it is
observed that the combination with C¼387.4, g¼0.0075, and
d¼3 generally has the best performance in the thirteenth run.

The proposed PSO optimization approach successfully finds
the global optimum just with 100 iterations. This result was
repeated in multiple runs of the program. Values of the para-
meters C and g in five different runs of the program with 150
iterations are presented in Fig. 1. In each different run of program,
PSO first generates random values for C, g and d, and then it
searches for better values of them that produce better ARL.
Usually, after 50 iterations, the approach converges to be best
parameters values of the Khybrid kernel function.

One experiment has been carried out to compare the perfor-
mance of Khybrid kernel function with the commonly used GRBF
(see Eq. (7)) and polynomial function (see Eq. (8)). The same
parameters (i.e. C¼387.4, g¼0.0075, and d¼3) having best
performance in Table 3 are used to fairly compare the perfor-
mance of three different kernel functions. Table 4 shows the out-
of-control ARLs for different kernel function. Based on the
simulations results, it is found that the MED chart with Khybrid

kernel function has better monitoring capability than those from
the other two kernels.

4.3. Comparison with other control charts

4.3.1. Comparison with statistics-based control charts

Comparisons between the MED chart and some classic statistics-
based control charts are shown in Table 5. The compared control
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Table 4
Performance analysis of the MED chart to the kernel functions.
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charts are SCC (Wardell et al., 1994), X (Wardell et al., 1994),
exponentially weighted moving average (EWMA) (Wardell et al.,
1994), exponentially weighted moving average charts for stationary
processes (EWMAST) (Zhang, 1998) and ARMA (Jiang et al., 2000)
commonly used as monitoring tools for auto-correlated process
shifts. The results indicate that the MED chart outperform the other
control charts for small shifts (0rdr2). The SCC and X charts
perform better for large shifts because they use only a current single
observation, whereas the MED chart uses 16 continual observation
pointes for an observation vector to generate one MED value. For
example, when the first shift point enters the moving window, the
other 15 observation pointes are in an in-control state, and
immediate deviation cannot be observed by the MED chart. Only
when more shift pointes or larger shifts enter the moving windows
can be MED chart give an out-of-control alarm.



Table 5
Comparisons between the MED chart and some statistics-based charts based

on ARL.

F g0 d MED SCCa
Xa EWMAa EWMASTb ARMAc

0.00 3.4587 0.00 371.26 370.38 370.40 369.00 370.40 N/A

0.50 17.41 152.22 152.22 28.19 28.19 N/A

1.00 10.23 43.89 43.89 9.73 9.73 N/A

2.00 4.25 6.30 6.30 4.18 4.18 N/A

3.00 2.73 2.00 2.00 2.76 2.76 N/A

4.00 1.06 1.07 1.24 2.65 2.71 2.81

5.00 1.00 1.00 1.08 1.17 1.68 1.57

6.00 1.00 1.00 1.00 1.00 1.00 1.00

0.475 8.4598 0.00 375.87 370.38 365.34 376.53 373.66 370.00

0.50 67.26 253.13 166.77 70.05 77.91 65.60

1.00 20.38 117.96 51.05 20.69 22.45 20.30

2.00 6.04 22.64 8.69 7.16 6.06 6.61

3.00 5.65 4.02 2.50 4.28 3.35 3.67

4.00 1.21 1.25 1.38 2.19 2.02 2.09

5.00 1.11 1.09 1.26 1.07 1.99 1.66

6.00 1.00 1.00 1.00 1.00 1.00 1.00

0.95 21.0157 0.00 371.39 370.38 369.15 365.16 368.31 370.00

0.50 134.67 330.95 259.73 245.67 222.07 226.00

1.00 23.64 138.84 118.92 107.83 105.12 102.00

2.00 13.61 1.08 22.44 27.79 23.33 25.80

3.00 2.90 1.00 1.43 10.01 7.41 8.65

4.00 1.04 1.05 1.40 2.47 2.05 2.44

5.00 1.00 1.00 1.27 1.64 1.90 1.08

6.00 1.00 1.00 1.00 1.00 1.00 1.00

a Results ð0rdr3Þ taken from Wardell et al. (1994).
b Results ð0rdr3Þ taken from Zhang (1998).
c Results ð0rdr3Þ taken from Jiang et al. (2000).

Table 6
Comparisons between the MED chart and NN-based scheme and SCC based on

ARL.

F g0 d MED BPNa SVR-based CUSUMb

ARL SRL ARL SRL ARL SRL

0.00 3.4587 0.00 371.26 370.21 372.96 370.10 371.79 369.43

0.50 17.41 28.91 25.38 17.93 20.33 48.02

1.00 10.23 5.69 8.29 5.76 12.07 21.35

2.00 4.25 2.09 2.47 1.51 4.26 2.14

3.00 2.73 0.75 1.29 0.61 2.89 2.38

4.00 1.06 0.51 1.10 0.98 1.04 1.02

5.00 1.00 0.00 1.00 0.00 1.00 0.00

6.00 1.00 0.00 1.00 0.00 1.00 0.00

0.25 5.9871 0.00 370.89 378.86 371.32 385.70 370.42 384.01

0.50 35.12 38.60 32.46 24.96 37.09 39.45

1.00 13.28 13.09 11.87 9.03 14.05 15.98

2.00 4.24 2.06 3.39 2.19 5.64 2.46

3.00 4.02 1.49 1.63 0.99 4.35 1.98

4.00 1.29 1.28 1.60 0.84 1.37 1.41

5.00 1.00 0.00 1.17 0.65 1.03 1.00

6.00 1.00 0.00 1.00 0.00 1.00 0.00

0.50 9.0125 0.00 373.52 372.88 371.35 373.57 377.38 378.41

0.50 53.21 43.09 52.07 45.74 57.05 45.17

1.00 15.09 15.64 16.74 12.88 16.29 18.33

2.00 6.69 3.19 4.84 3.26 6.22 6.81

3.00 5.38 1.96 2.22 1.52 5.24 4.26

4.00 2.16 1.88 2.89 1.48 2.38 1.98

5.00 1.05 1.04 1.05 0.59 1.03 0.00

6.00 1.00 0.00 1.00 0.00 1.00 0.00

0.75 12.1134 0.00 371.61 370.14 370.60 368.36 371.88 370.45

0.50 90.98 85.39 91.72 94.81 95.32 94.89

1.00 18.09 31.27 35.42 32.71 21.87 20.48

2.00 9.76 4.09 8.95 9.23 9.84 9.78

3.00 5.99 3.19 3.52 3.28 6.01 6.23

4.00 1.76 2.08 2.04 2.14 1.98 2.10

5.00 1.00 0.00 1.12 0.87 1.02 1.70

6.00 1.00 0.00 1.00 0.00 1.00 0.00

0.95 21.0157 0.00 371.39 374.01 370.37 374.11 371.38 369.45

0.50 134.67 131.45 152.09 148.81 145.42 151.61

1.00 23.64 60.38 77.00 69.16 21.04 36.31

2.00 13.61 21.16 32.07 27.57 15.21 7.21

3.00 2.90 1.24 10.17 1.00 3.00 3.25

4.00 1.04 0.65 2.54 2.87 1.06 1.88

5.00 1.00 0.00 1.08 0.84 1.00 0.00

6.00 1.00 0.00 1.00 0.00 1.00 0.00

a Results ð0rdr3Þ taken from Wardell et al. (1994).
b Calculation according to algorithm 1 taken from Issam and Mohamed (2008).
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4.3.2. Comparison with NN-based control scheme and SVR-based

CUSUM

For further comparison, the performances of the MED chart, the
back-propagation network (BPN) based monitoring scheme (Hwarng,
2004), and SVR-based CUSUM (Issam and Mohamed, 2008) are
shown in Table 6. Table 6 presents the best results of ARL and SRL
(the standard deviation of ARL) of three control schemes. For
comparison, the algorithm 1 in the work of Issam and Mohamed
(2008) was applied to obtain the ARL results of SVR-based CUSUM
chart, and the best results of SVR-based CUSUM chart are presented
in Table 6. Each ARL was computed for different F and d. The MED
chart outperforms the SVR-based CUSUM chart (Issam and
Mohamed, 2008) for small shifts (0rdr3). For example, when F
equals 0.0, 0.25, 0.5, 0.75, 0.95 and d equals 3.0, the ARL1 of the MED
chart and SVR-based CUSUM chart are 2.73 and 2.89, 4.02 and 4.35,
5.38 and 5.24, 5.99 and 6.01, and 2.90 and 3.00, respectively. For large
mean shifts (4rdr6), the MED chart shows a performance similar
to that of SVR-based CUSUM chart. For example, when F equals 0.0,
0.25, 0.5, 0.75, 0.95 and d equals 4.0, the ARL1 of the MED chart and
SVR-based CUSUM chart are 1.06 and 1.04, 1.29 and 1.37, 2.16 and
2.38, 1.76 and 1.98, and 1.04 and 1.06, respectively. Moreover, all of
the charts (in Tables 5 and 6) are capable of detecting the large mean
shifts (d¼5,6) immediately (the ARL1 are less than two).
0 10 20 30 40 50 60
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Fig. 2. MED chart of an auto-correlated process with shift d¼2.0s and F¼0.95.
5. Further analysis of the MED chart

In order to further analyze the performance of the MED chart, one
representative MED chart for auto-correlated process is plotted. Fig. 2
is the MED chart of an auto-correlated process with auto-correlation
F¼0.95 and shift d¼2.0s. In the MED chart, the window number
means the moving window position over the time series stream and
MED indicated the distance value between the input vector and the
corresponding SVRin-control. The starting shift occurs at window
number 30. The red circles on the curved lines mean that the MED
values of the moving window vectors exceed the control limit.
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Some important features can be observed from the MED chart.
Firstly, three obvious states are shown in the MED chart: (1) in-
control state (the first 17 windows number); (2) fast upward trend
state (when the first shift point enters the 18th moving window
number); (3) deviation state (when the first shift point exceeds the
control limit). Secondly, an upward trend can be observed when a
shift point enters the moving window at window number 18, and
then the MED values increases gradually as more shift points enter.
Thirdly, the MED values of the third state are obviously larger than
those of the first state, which indicates that the deviation of the out-
of-control state is completely presented. Fourthly, according to the
feature of the fast upward trend state, the starting points of detected
shift could be observed. The starting point of shift is usually relevant
to the time at which the out-of-control condition occurs, and so can
be an important clue used by quality practitioners to identify the
root causes. These important features provide important process
information such as three obvious process sates, MED values and
starting points, etc., which is very useful information for quality
practitioners to monitor the process and identify the root causes.
6. Case study

To further validate the effectiveness of the developed MED
chart, its real application in an aircraft horizontal stabilizer
assembly process for monitoring and identification of process
mean shifts is illustrated. Most components of an aircraft have a
very high demand of high quality, reliability, and low variation.
Fig. 3. The CAD model of aircraft horizontal

Fig. 4. Fixture scheme in aircraft horiz
Aircraft horizontal stabilizer is one of these most important
components and has very strict dimensional specification. The
assembly processes can directly affect the reliability and perfor-
mance of the final aircraft. However, the complexity of aircraft
horizontal stabilizer assembly processes makes it very difficult to
efficiently detect the mean shifts depend solely on the operator’s
experience. The immediate detecting the out-of-control condi-
tions in aircraft horizontal stabilizer assembly processes can
greatly narrow down the set of the possible root causes, facilitat-
ing rapid analysis and corrective action by quality engineers.

Fig. 3 shows the computer-aided design (CAD) model of aircraft
horizontal stabilizer, which is mainly composed of two beams
(front beam and back beam), two rear spars (front rear spar and
back rear spar), and several webs. There are a total of sixteen
measurement points (eight measurement points on front beam
and back beam, respectively) numbered in the CAD model. Among
these sixteen measurement points, two measurement points are
most important (the fourth measure point on front beam and back
beam) and the characteristics are called key product characteristics
(KPCs), which are the center balance points and directly affect the
final dimensional quality and product reliability of aircraft hor-
izontal stabilizer. These two measurement points are observed and
monitored based on the developed MED control chart. Since the
front beam and back beam are assembled independently, the two
measurement points of KPCs on front beam and back beam are
monitored independently.

Fig. 4 is the fixture layout in horizontal stabilizer assembly
process. Firstly, the rear spars are loaded and located into fixture
stabilizer and key product characteristic.

ontal stabilizer assembly process.
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system, and is completed by assembling two rear spars into one
rear spar component. Then the webs are loaded, located, clamped
and assembled into the rear spar component. Finally, two beams
are located and assembled. The two KPCs are formed on the
aircraft horizontal stabilizer.

The 185 sample points from real-world assembly processes
have been collected. The fitted time series model for the data
series is an AR(1) model with a positive auto-correlation:

XðtÞ ¼ 0:6728� Xðt�1Þþut ut �Nð0,0:09413Þ

The generated data set in simulation experiments of Section 4
follows the normal distribution through the computer programs,
however, the normality of the collected data set from real-world
processes needs to be checked. Fig. 5 presents the normality
evaluation results of the data set from horizontal stabilizer
assembly process. From these plots, it is shown that the data set
quite follows normal distribution.

The control limit g0¼7.6905 was used for this case. Fig. 6
presents the result of the MED charts for monitoring the beam
and back beam KPCs. From Fig. 6 the shift was detected at
window number 93 for front beam and at window number 127
for back beam, respectively. The reason why the process mean
shifted is that the position of the fixture locator deviates from the
nominal design due to the worn-out locators and the excessive
looseness of the locator. Actually, the mean shift (d1¼1.2140)
occurred at window number 81 for front beam and the mean shift
(d1¼1.3827) occurred at window number 117 for back beam.
Therefore, the out-of-control ARL1 of the MED chart was 13 for
front beam and 11 for back beam. This indicates that the
developed MED chart exhibits a strong ability to monitor the
mean shift in the real aircraft horizontal stabilizer assembly
process.
7. A procedure for applying the MED chart into real processes

A general procedure for applying the MED charts in auto-
correlated processes to monitor mean shifts is proposed. The
parameters of SVR having better performance in Section 4.1 are
used. In order to obtain a balance between type I and type II
errors, it is needed to first decide the desired ARL0, and then to
create the required balance by adjustment of the control limit.
This adjustment is addressed by Steps 3 and 4.

Step 1: collect time series measurements for the variable when
the process is in control.
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Step 2: judge the normality of the data set. If the data set does
not follow the normal distribution, transforming data set to
near normality according to the steps in Section 3.6.
Step 3: training SVR using in-control datasets with training size
(400–600), window size (14–18) and 150 iterations.
Step 4: adjust the control limit of the MED chart by against test
moving window vectors over time series to maintain the
desired ARL0.
Step 5: if ARL1 is not achievable, one or more of the factors
mentioned in Step 2 should be adjusted until the required
ARL0 is achieved and the balance is obtained. After completed
the above four steps, the construction of an MED chart is
completed.
Step 6: the monitoring begins with the first in-control 16
points for the process variable (when the size window is 16).
This step is considered as being more practical since in the real
world problems out-of-control signal often occurs after a
period in which the process is in control and the starting point
of the out-of-control signal is usually unknown.
Step 7: input the moving window vector to SVR, and then the
output MED values are generated.
Step 8: if the MED value is beyond the control limit of the MED
chart, an alarm will be triggered and go to step (8). Otherwise,
the time point of sampling increases by 1, and return to
step (5).
Step 9: calculate the out-of-control ARL1, and take actions to
correct the process.
8. Conclusions and future work

Monitoring the mean shifts in auto-correlated processes has
been a challenging task for traditional SPC techniques. This study
has proposed one new monitoring approach based on SVR for
recognizing the mean shifts of auto-correlated processes. The
monitoring approach is capable of providing a comprehensible
and quantitative assessment value for current process state
through calculating the MED values. Based on these MED values
over time series, a novel MED control chart is developed to
monitor the mean shifts of auto-correlated processes.

Some important details of the construction of the MED chart
are discussed and analyzed using the simulation experiments. The
simulation results indicate that the MED chart shows the
improved performance, which outperforms those of some
statistics-based charts and the NN-based control scheme for small
process mean shifts in auto-correlated processes. Moreover, the
influences of some key parameters of SVR upon its performance
are analyzed, which aims to find the suitable parameters for
constructing the MED chart. The effectiveness of the MED chart is
further validated through the datasets from one case, and a
general procedure for using the MED chart in the industrial
applications is also proposed. Some merits of the proposed MED
chart are concluded as follows: the MED chart possesses high
performance for detecting the mean shifts of auto-correlated
processes immediately based on ARL. The best time to identify a
shift in a process is immediately after the shift has occurred since
it becomes more difficult to identify shifts as more observations
are taken. Early detection makes the root cause of the signal
easier to identify, whereas causes of shifts that occurred in the
distant past are difficult to identify. Increasing the probability of
early detection would result in the fastest rate of continuous
quality improvement. Furthermore, just like CUSUM chart, the
MED chart also provides some important process information
including quantitative assessment values, the starting shift points
and the whole tendency state of process state, which are very
important for quality engineers to identify the root causes as soon
as possible.

There are several possible directions for future research.
Firstly, further work can focus on finding out the better optimiza-
tion algorithms to find an optimal subset of the parameters of
SVR. Secondly, further investigation can be done to apply the
proposed MED chart into monitoring the covariance changes,
which is also important in SPC. Thirdly, in the future more
industry cases need be collected in order to further validate and
improve the MED chart.
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