
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tprs20

Download by: [Shanghai Jiaotong University] Date: 16 October 2017, At: 07:05

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20

On-line classifying process mean shifts in
multivariate control charts based on multiclass
support vector machines

Shichang Du , Jun Lv & Lifeng Xi

To cite this article: Shichang Du , Jun Lv & Lifeng Xi (2012) On-line classifying process mean
shifts in multivariate control charts based on multiclass support vector machines, International
Journal of Production Research, 50:22, 6288-6310, DOI: 10.1080/00207543.2011.631596

To link to this article:  http://dx.doi.org/10.1080/00207543.2011.631596

Published online: 09 Jan 2012.

Submit your article to this journal 

Article views: 299

View related articles 

Citing articles: 21 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=tprs20
http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207543.2011.631596
http://dx.doi.org/10.1080/00207543.2011.631596
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2011.631596
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2011.631596
http://www.tandfonline.com/doi/citedby/10.1080/00207543.2011.631596#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00207543.2011.631596#tabModule


International Journal of Production Research
Vol. 50, No. 22, 15 November 2012, 6288–6310

On-line classifying process mean shifts in multivariate control charts based on

multiclass support vector machines

Shichang Dua*, Jun Lvb and Lifeng Xiac

aDepartment of Industrial Engineering and Logistics Engineering, School of Mechanical Engineering,
Shanghai Jiaotong University, Shanghai, 200240, People’s Republic of China; bSchool of Business,
East China Normal University, Shanghai 200241, People’s Republic of China; cState Key Lab of

Mechanical System and Vibration, Shanghai, 200240, People’s Republic of China

(Received 27 January 2011; final version received 3 October 2011)

In multivariate statistical process control (MSPC), most multivariate control charts can effectively monitor
anomalies based on overall statistic, however, they cannot provide guidelines to classify the source(s) of out-
of-control signals. Classifying the source(s) of process mean shifts is critical for quality control in multivariate
manufacturing process since the immediate identification of them can greatly help quality engineer to narrow
down the set of possible root causes and take corrective actions. This study presents an improved particle
swarm optimisation with simulated annealing-based selective multiclass support vector machines ensemble
(PS-SVME) approach, in which some selective multiclass SVMs are jointly used for classifying the source(s) of
process mean shifts in multivariate control charts. The performance of the proposed PS-SVME approach is
evaluated by computing its classification accuracy. Simulation experiments are conducted and a real
application is illustrated to validate the effectiveness of the developed approach. The analysis results indicate
that the developed PS-SVME approach can perform effectively for classifying the source(s) of process mean
shifts.

Keywords: multivariate statistical process control; support vector machine; ensemble classification; process
mean shifts

1. Introduction

The ability to monitor and reduce process variation for quality improvement in manufacturing process plays a
critical role in the success of one manufacturing enterprise in today’s globally competitive marketplace
(Montgomery 2001, Du et al. 2008). There are many processes in which the simultaneous monitoring of two or
more related quality characteristics is necessary. Processes monitoring in which several related variables are of
interest are collectively known as multivariate statistical process control (MSPC) (Woodall and Montgomery 1999,
Bersimis et al. 2007). Multivariate control charts have been widely used as effective tools in MSPC. The main
shortcoming of multivariate control charts is that they can detect an unusual event but do not directly provide the
information required by a practitioner to determine which variables or combination of variables causes the out-of-
control signals. This raises the issue of identification in relation to multivariate control procedure. Among various
abnormal conditions, this study focuses on classifying the source(s) of process mean shifts. Mean shifts are defined
as unanticipated sudden shifts in process mean vector. The primary possible causes for the mean shifts result from
the introduction of new workers, machines or methods, a change in the measurement method or standard, etc.

Kourti and MacGregor (1996) reviewed several approaches to solve the identification problem. Guh and Shiue
(2008) proposed a decision tree-based model for online detect mean shifts and classify the source(s) of the mean
shifts. Some authors suggested using decomposition techniques for classifying the source(s) of the mean shifts, which
are based mostly on T2 statistic (Mason et al. 1995, 1997, Li et al. 2008, Verron et al. 2010).

Advanced automatic data inspection and collection techniques have been undergoing tremendous growth during
the past few years, significantly transforming many aspects of manufacturing processes and providing
unprecedented opportunities for applying various machine learning approaches into statistical process control
(SPC). In the recent decade, neural networks (NNs) have been used as effective tools to monitor and classify the
source(s) of the process mean and/or variance shifts (Pugh 1989, Smith 1994, Cheng 1995, Chang and Aw 1996,
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Cook and Chiu 1998, Chang and Ho 1999, Ho and Chang 1999, Cook et al. 2001, Hwarng 2004, Pacella 2004, Niaki
and Abbasi 2005, 2008, Guh 2007, Yu and Xi 2009, Du and Xi 2010).

Support vector machine (SVM) has recently become a new generation learning system based on recent advances
on statistical learning theory for solving a variety of learning, classification and prediction problems (Cortes and
Vapnik 1995, Gunn 1998, Vapnik 1998, Cristianini and Shawe-Taylor 2000, Gupta 2010). SVMs calculate a
separating hyperplane that maximises the margin between data classes to produce good generalisation abilities. The
main difference between NNs and SVMs is in their risk minimisation (Gunn 1998). In case of SVMs, structural risk
minimisation principle is used to minimise an upper bound based on an expected risk, whereas in NNs, traditional
empirical risk minimisation is used to minimise the error in the training of data. The difference in risk minimisation
leads to a better generalisation performance for SVMs than NNs (Gunn 1998).

Some applications of SVM to monitor and classify the process variation have been reported. Chinnam (2002)
demonstrated that support vector machines (SVMs) can be extremely effective in minimising both Type-I and Type-
II errors for detecting shifts in the auto-correlated processes, and performed as well or better than traditional
Shewhart control charts as well as other machine learning methods. Sun and Tsung (2003) developed a kernel-
distance-based multivariate control chart using support vector, which can perform better than conventional charts
when the underlying distribution of the quality characteristics is not multivariate normal. Cheng and Cheng (2008)
developed one SVMs-based classifier to identify the source of variance changes in multivariate process (MP).

In recent years, combining machines instead of using a single one for increasing learning accuracy is an active
research area. An ensemble of classifiers is a collection of several classifiers whose individual decisions are combined
in some way to classify the testing examples. It is known that an ensemble often exhibits a better performance than
the individual classifiers that compose it. Ensemble classification learning generates a set of base classifiers using
different distributions of training data and then aggregates their outputs to classify new samples. These ensemble
learning methods enable users to achieve more accurate predictions with higher generalisation abilities than the
predictions generated by individual models or experts on average. Though different applications of SVM ensembles
have been reported, e.g. land cover (Chan et al. 2001), bacterial transcription start sites prediction (Gordon et al.
2006), text-independent speaker recognition (Lei et al. 2006), and cardiovascular disease level prediction (Eom et al.
2008), few researches have been done to apply SVMs ensemble technique into classifying the source(s) of the process
mean shifts in multivariate control charts.

The rest of this paper is organised as follows. The approach based on multivariate control charts and selective
multiclass SVMs ensemble for monitoring and classifying the source(s) of mean shifts in MP is developed in Section
2. In Section 3, the details of SVMs ensemble classifier are explored. In Section 4, the simulation experiments and
performance analysis are conducted based on the evaluation index. In Section 5, a case study is presented and the
developed approach is validated through the real-world data. Finally, the conclusions are given in Section 6.

2. Overview of the approach

2.1 The architecture of the approach

This section provides an overview with respect to monitoring and classifying the source(s) of the mean shifts in MP.
The developed approach consists of a multivariate control chart used as a detector of out-of-control signals, and
selective SVMs ensemble as a classifier of the mean shifts, respectively.

Among various abnormal conditions, this study is concerned with process mean shifts. Assume there are q
quality characteristic variables X1,X2, . . . ,Xq need to be monitored and identified, which is expressed as one vector
X ¼ ðX1,X2, . . . ,XqÞ. When increases � occur at time tp, the observations of quality characteristic vector X can be
expressed as follows:

XðtÞ ¼ k0 þ KðtÞ þ dðt, tpÞ ð1Þ

where

X(t) quality characteristics vector observed at time t;
k0 the process mean vector k0 ¼ ð�1,�2, . . . ,�qÞ when the process is under control;

K(t) Nð0,D0Þ, multivariate normal distribution;
D0 the process covariance when the process is under control;

dðt, tpÞ ð�1, �2, . . . , �qÞ, where �j is the magnitude of shifts.
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For example, in a bivariate process, X(t) follows Nðk0,D0Þ when the process is under control. The covariance

matrix D0 can be expressed:

D0 ¼
�2X1

�X1X2

�X1X2
�2X2

" #
ð2Þ

where �X1
and �X2

are the standard deviations of the first variable X1 and second quality variable X2, respectively.
There are three abnormal classes of patterns for a bivariate process: (1) the first variable being out of control

(i.e., �1 þ �, �2); (2) the second variable being out of control (i.e., �1, �2 þ �); (3) both the first and second variable

being out of control (i.e., �1 þ �1, �2 þ �2).
The architecture of the proposed approach is shown in Figure 1, in which three modules are in series: Module I,

Module II and Module III utilised for effectively monitoring and classifying the source(s) of mean shifts in MPs. In

Module I, T2 control chart is used in this study for monitoring the process and judge whether the process is under

control.

2.2 Data pre-processing

2.2.1 Evaluating multivariate normality

Module II provides various data pre-processing, such as normality evaluating, data cleaning, noise data deletion

etc., which are very important to improve the performance of the process monitoring and classifying.
The assumption of normality for q quality characteristic variables usually needs to be checked. Plots are always

useful tools in data processing. For univariate process, special plots called Q-Q plots can be used to assess the

assumption of normality. However, for the process with multiple variables, it is more difficult to check.

No

Module I

Monitoring

Yes

T 2 control chart

Out of control?

Module III

Classifying
PS-SVME is used to classify the 

source(s) of mean shifts

Data pre-processing

Sample data set from the process

Noise data delection

Evaluating normality
Module I

Data is standardised

Figure 1. The architecture of the proposed monitoring and classifying approach.
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A formal method for judging the joint normality for multiple variables based on the squared generalised
distances is popular,

d 2
j ¼ xj � �x

� �0
S�1 xj � �x

� �
, j ¼ 1, 2, . . . , n ð3Þ

where x1, x2, . . . , xn are the sample observation, �x is the sample mean and S is the sample covariance, respectively.
When the parent population is multivariate normal and both n and n-q are greater than 25 or 30, each of the

squared distances d 2
1 , d

2
2 , . . . , d 2

n should behave like a chi-square random variable (Anderson 2003). It is very helpful
to plot these distances, and the resulting plot is called a chi-square plot.In this study the chi-square plot is used for
evaluating normality of a data set, and the evaluating steps are presented as follows:

Step 1: Calculating the squared distances in Equation (3).

Step 2: Order the squared distances in Step 1 from smallest to largest as

d 2
ð1Þ � d 2

ð2Þ � � � � � d 2
ðnÞ:

Step 3: Graph the pairs ðQc,qðð j� 1=2Þ=nÞ, d 2
ð j ÞÞ,

where Qc,qðð j� 1=2Þ=nÞ is the 100ð j� 1=2Þ=n quantile of the chi-square distribution with q degrees of freedom.

Step 4: Judge the normality of the data set. The multivariate normality is indicated if

(1) Rough half of the d 2
j are less than or equal to Qc,qð0:5Þ.

(2) A plot of the ordered squared distances d 2
ð1Þ � d 2

ð2Þ � � � � � d 2
ðnÞ versus Qc,qð

1�0:5
n Þ, Qc,qð

2�0:5
n Þ, . . . ,Qc,qð

n�0:5
n Þ,

respectively, resembles nearly a straight line having slope 1 and that passed through the origin.

If the plot is a systematic curved pattern, it suggests lack of normality. Quantiles are specified in terms of
proportions, whereas percentiles are specified in terms of percentages. The quantiles Qc,qðð j� 0:5Þ=nÞ are related to
the upper percentiles of a chi-squared distribution. In particular, Qc,qðð j� 0:5Þ=nÞ ¼ � 2

q ððn� jþ 0:5Þ=nÞ.

The chi-square plot for evaluating multivariate normality has been widely used. Johnson and Wichern (2007)
presented an example of a chi-square plot for a four-variable data set. In the example, four different measures of
stiffness, x1, x2, x3, and x4, of each of n ¼ 30. The square distances d 2

j ¼ ðxj � �xÞ0S�1ðxj � �xÞ are calculated and for
more details, the readers are referred to Johnson and Wichern (2007). According to the 4th step, although the last
two points with the largest squared distances are clearly removed from the straight line (the last two points make the
plot appear curved at the upper end), the distribution of the whole data set is normal.

2.2.2 Procedure for transforming data set to near normality

In practice, the multivariate normality of data set may not be a viable assumption. One important way to handle this
situation is to transform the non-normal data to near normality. Transformation is a re-expression of the data set in
different units. For instance, when a histogram of positive observations exhibits a long right hand tail, transforming
the observations by taking their logarithms or square roots will often markedly improve the symmetry about the
mean and the approximation to a normal distribution.

Different methods for transformations have been developed, which can be divided into several classes according
to transformed scale, such as ‘square roots transformation’, ‘logit transformation’, ‘Fisher’s z-transformation’, and
‘power transformation’. Among these transformations, the ‘power transformation’ is a very useful transformation
method. Box and Cox (1964) modified the transformation method,

xð�Þ ¼
x��1
� � 6¼ 0

ln x � ¼ 0

(
ð4Þ

which is continuous in � for x4 0.
Given the observations x1, x2, . . . , xn, the solution for the choice of an appropriate power � is the solution that

maximised the expression

‘ ð�Þ ¼ �
n

2
ln

1

n

Xn
j¼1

x
ð�Þ
j � �xð�Þ

� � 2
" #

þ �� 1ð Þ
Xn
j¼1

ln xj ð5Þ
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x
ð�Þ
j is defined in Equation (4) and

�xð�Þ ¼
1

n

Xn
j¼1

x
ð�Þ
j ¼

1

n

Xn
j¼1

x�j � 1

�

 !
ð6Þ

is the arithmetic average of the transformed observations. The first term in Equation (5) is, apart from a constant,

the logarithm of a normal likelihood function, after maximising it with respect to the population mean and variance

parameters.
The calculation of ‘ ð�Þ for many values of � is an easy task for computer. It is helpful to have a graph of ‘ ð�Þ

versus �, as well as a tabular display of the pairs ð�, ‘ð�ÞÞ, in order to study the behaviour near the maximising value

�̂. For instance, if either � ¼ 0 (logarithm) or � ¼ 0:5 (square root) is near �̂, one of these may be preferred because

of its simplicity.
For multivariate data set, a power transformation should be selected for each of the variables. In this study, let

�1, �2, . . . , �q be the power transformations for the q measured characteristics. Each �k can be selected by

maximising

‘kð�Þ ¼ �
n

2
ln

1

n

Xn
j¼1

x
ð�kÞ
jk � �x

ð�kÞ
k

� � 2
" #

þ �k � 1ð Þ
Xn
j¼1

ln xjk ð7Þ

where x1k, x2k, . . . , xnk are the n observations on the kth variable, k ¼ 1, 2, . . . , q.
Here

�x
ð�kÞ
k ¼

1

n

Xn
j¼1

x
ð�kÞ
jk ¼

1

n

Xn
j¼1

x�kjk � 1

�k

 !
ð8Þ

is the arithmetic average of the transformed observations. The jth transformed multivariate observation is

x
ðk̂Þ
j ¼

x
�̂1
j1
�1

k̂1

x
�̂2
j2
�1

k̂2

..

.

x
�̂q
jq
�1

k̂q

2
6666666666664

3
7777777777775

ð9Þ

where �̂1, �̂2, . . . , �̂q are the values that individually maximise Equation (7).
Through using this procedure, the multivariate non-normal data set can be transformed to near normality.

2.2.3 Standardisation of data

Before the process data over time series stream are input to Module III, without loss of generality, all variables are

scaled so that each process variable has mean zero and variance one. The original data is transformed into a form

suitable for training and recalling in Module II. The data is standardised by using Equation (10) to result in each

quality variable having a mean of zero and a variance of unity.

X0i,q ¼
Xi,q � �q

�q
ð10Þ

where X0i,q will follow Nð0,RÞ when Xi,q follows Nð�0,�0Þ.
The covariance matrix R is expressed in correlation form, namely, the main diagonal elements are all one and the

off-diagonal elements are the pairwise correlation (�) between the process variables (Equation (11)). The proofs are
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given in the Appendix.

R ¼

1 �12 � � � �1q

�12 1 � � � �2q

..

. ..
. . .

. ..
.

�1q �2q � � � 1

2
66664

3
77775 ð11Þ

For example, in one process with three variables, the mean vector k0 and the variance-covariance matrix R in
correlation form are expressed as follow, and if all variables are mutually independent, the matrix R becomes an
identity matrix.

k0 ¼

0

0

0

2
64

3
75: R ¼

1 0:6 0:6

0:6 1 0:6

0:6 0:6 1

2
64

3
75

2.3 SVMs

2.3.1 Brief review of SVMs

In Module III, an improved particle swarm optimisation with simulated annealing-based selective multiclass
support vector machines ensemble (PS-SVME) is explored for classifying the source(s) of mean shifts in MP due to
high recognition power of SVMs ensembles. Utilisation of PS-SVME aims to improve the generalisation
performance of identification system in comparison with using single multiclass SVMs classifiers, and to improve
the ability to escape from a local optimum.

The basic idea of SVMs is to transform the data to a higher dimensional feature space and find the optimal
hyperplane in the space that maximises the margin between the two classes. Consider a training data set
fðx1, y1Þ, ðx2, y2Þ, . . . , ðxN, yNÞg, i ¼ 1, 2, . . . ,N, where N is the total number of training vectors, xi 2 Rd � R is the ith
d-dimensional input vector, and yi 2 f1, �1g is known target. The training of SVM involves the solution of the
following quadratic optimisation problem:

Minimise

1

2
wTwþ C

XN
i¼1

�i ð12Þ

Subject to

yiðw
T	ðxiÞ þ bÞ � 1� �i, �i � 0 ð13Þ

where �i are slack variables, measuring the degree of misclassification of the sample xi, C is the error penalty factor,
penalising the non-zero �i, the bias b is a scalar, representing the bias of the hyperplane, w is the vector of hyperplane
coefficients, defining a direction perpendicular to the hyperplane, the index i labels the N training cases, and the
map function 	 is a non-linear transformation to map the input vectors into a high-dimensional feature space
(as shown in Figure 2). The optimisation problem becomes a trade-off between the margin maximisation and
training errors minimisation.

In particular, if the data are perfect linearly separable, then �i ¼ 0, and the separating hyperplane that creates the
maximum distance between the plane and the nearest data (i.e. the maximum-margin equals jjwjj�2) is the optimal
separating hyperplane. To solve non-linear classification tasks, a mapping function is usually employed to map the
training samples from the input space into a higher-dimensional feature space. This allows the SVM to fit the
maximum-margin hyperplane in the transformed feature space. Any function that satisfies Mercer’s theorem
(Cristianini and Shawe-Taylor 2000) can be used as a kernel function. Some popular SVM kernel functions include:

Linear function:

Kðxi, yj Þ ¼ xi � yj

International Journal of Production Research 6293
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Gaussian radial basis function (RBF):

Kðxi, yjÞ ¼ exp

�
� 
 xi � yj

��� ��� 2
�


 � 0

Polynomial function with degree d:

Kðxi, yj Þ ¼ ððxi � yjÞ þ 
Þ
d 
 � 0

Sigmoid:

Kðxi, yjÞ ¼ tan hð
xi � yj Þ þ rÞ 
 � 0

2.3.2 Multiclass SVMs

SVMs are originally designed for binary classification (Cortes and Vapnik 1995, Vapnik 1995, 1998), which are not
suitable for classifying the source(s) of the mean shifts because there are usually several quality variables needed to
be monitored and identified in a MP. Thus, it is necessary to develop an approach to deal with a multi-classification
problem. Multi-classification can be obtained by the combination of binary classification (Crammer and Singer
2000). In order to extend a basic SVM to solve multi-classification problem, ‘one-against-one’, ‘one-against-all’ and
direct acyclic graph (DAG) are three popular approaches. Hsu and Lin (2002) conducted a comprehensive
comparison of these three multiclass SVM classification approaches, and they suggested that the one-against-one
method is most suited for practical use than other methods. Therefore, one-against-one method is used to classify
the source(s) of the mean shifts in this study.

3. PS-SVME

3.1 PS-SVME framework

The main steps of PS-SVME are given as follows.

Step 1: Creation of single SVM for binary classification. Several accurate and diverse binary classification SVMs
(i.e., SVM1,SVM2, . . . ,SVMqðq�1Þ=2) are initially created.

Step 2: Creation of one component multiclass SVM classifier through combining single SVM (SVM1,
SVM2, . . . ,SVMqðq�1Þ=2). SVM is originally designed for binary classification, which is not suitable for classifying

W

yi = −1

yi = 1

b

Margin 

Hyperplane 

Figure 2. A geometric interpretation of the classification of SVM for a data set with two classes.
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multiple variables with means shift simultaneously. One component multiclass SVM classifier is obtained by
combining the single binary SVM classifiers (SVM1,SVM2, . . . ,SVMqðq�1Þ=2) (Figure 3) created in Step 1 using ‘one-
against-one’ method (discussed in Section 3.2).

Step 3: Creation of several component multiclass SVM classifiers. By repeating Step 2, several multiclass SVM
classifiers are created and used as component multiclass SVMs classifiers for optimal selection in Step 4, and they
are denoted by f1, f2, . . . , fT.

Step 4: Selection of optimal subset. Instead of attempting to ensemble all independent component multiclass SVM
classifiers created in Step 3, the optimal subset is selected from the component multiclass SVM classifiers through an
improved particle swarm optimisation with simulated annealing (PSA) algorithm explored in this study (discussed in
Section 3.3).

Step 5: Combining ‘good’ outputs. Finally, the classified outputs of the optimal subset are combined to
produce the output of the ensemble using majority voting method (Zhou et al. 2002). Step 4 and Step 5 are shown in
Figure 4.

3.2 Creation of one component multiclass SVM classifier

This section discusses how to create one component multiclass SVM classifier through combining single SVM (Step
2 in Section 3.1). For q-class event, the ‘one-against-one’ method constructs M ¼ C 2

q ¼ qðq� 1Þ=2 binary classifiers,
and each of them is trained by binary-class data. For training data from the ith and the jth class, the following
binary classification problem needs to be solved:

min
1

2
ðwij Þ

Twij þ C
X
t

�ijn ðw
ij Þ

T

s:t:

ðwij Þ
TKðxnÞ þ bij � 1� �ijn if yn ¼ i

ðwij Þ
TKðxnÞ þ bij � �ijn � 1 if yn ¼ j

�ijn � 0

8><
>:

ð14Þ

where, similarly to binary classification SVMs, KðxnÞ is kernel function, ðxn, ynÞ is the ith or jth training sample,
w 2 RN and b 2 R are the weighting factors, �ijn is the slack variable and C is the penalty parameter.

3.3 Selective SVMs ensemble

3.3.1 Ensemble algorithm

The most prevailing ensemble constructing techniques are ‘bagging’ and ‘boosting’. Bagging is proposed based on
bootstrap sampling of the training set (Breiman 1996). The general idea of boosting is to develop the classifier
ensemble incrementally, adding one classifier at a time (Schapire 1990). There are many boosting algorithms. In this
study, the AdaBoost algorithm, short for adaptive boosting and proposed by Freund and Schapire (1997), is used to
ensemble learning. The proposed algorithm of SVMs ensemble is shown in Figure 5. The first ensemble member is
formed by applying the SVMs to the entire training set. Subsequent ensemble members are formed by applying the
SVMs to the training set but with cases re-weighted to place higher weight on cases that are misclassified by existing
ensemble members. The optimal subset is selected from component multiclass SVMs using PSA algorithm, which is

SVM1
SVMq(q–1)/2

Multiclass SVMs fi
Multiclass combination

SVM2

Figure 3. Creation of one component multiclass SVM classifier through combining single SVMs.
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Figure 5. The proposed selective multiclass SVMs ensemble algorithm.

Multiclass SVMs f1 Multiclass SVMs fT

Select optimal subset using PSA algorithm

Combing "good" outputs

Input

Multiclass SVMs f2

Figure 4. Selection of optimal subset and combining ‘good’ outputs.
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illustrated in Section 3.3.2. The votes of ensemble members are weighted by a function that lowers the vote of

classifier that has lower accuracy on the weighted training set from which it is learned.
Once a number of component multiclass SVM classifiers (i.e., f1, f2, . . . , fT) are obtained, PS-SVME will select

several SVMs from the component multiclass SVM classifiers to construct the SVMs ensemble. Both theoretical and

empirical studies demonstrate that ensemble several ‘good’ SVMs with accuracy and diversity could be better than

ensemble all component multiclass SVM classifiers for both regression and classification problems (Zhou et al.

2002). Here, ‘ensemble all’ means ensemble the output results of all component multiclass SVM classifiers.

Furthermore, the size of the ensemble is reduced without worsening the performance. However, excluding those

‘bad’ component multiclass SVM classifiers and selecting the optimal subset is not an easy task as one may have

imagined since the space of possible subsets is very large (2T � 1) for a population of size T (T is the number of all

component multiclass SVM classifiers). Thus, it is impractical to use exhaustive search to find an optimal subset.

There is still no agreement about which method is the most appropriate for selection of SVMs. Some intelligent

evolution algorithms show distinguished performance for solving this problem.
Particle swarm optimisation (PSO) is a population based search algorithm, which was inspired by the social

behaviour of bird flocks as originally developed by Eberhart and Kennedy (1995). It is widely reported that the PSO

algorithm is very easy to implement and has fewer parameters to adjust when compared with other evolutionary

algorithms. In this study, for PS-SVME, PSA algorithm is explored to obtain an optimal subset from the component

multiclass SVM classifiers. In PSA algorithm, each particle is ‘flown’ through the multidimensional search space,

adjusting its position in search space according to its own experience and that of neighbouring particles. The particle

therefore makes use of the best position encountered by itself and that of its neighbours to position itself toward an

optimal solution. The performance of each particle is evaluated using a predefined fitness function, which

encapsulates the characteristics of the optimisation problem.
It is an iterative process in which the change in weights of a particle at beginning of an iteration are calculated

using Equation (15) and new position of every particle is found using Equation (16).

viðtþ 1Þ ¼ kviðtÞ þ c1r1ð pid � xiðtÞÞ þ c2r2ð pgd � xiðtÞÞ ð15Þ

xiðtþ 1Þ ¼ xiðtÞ þ viðtþ 1Þ ð16Þ

where t is the current step number, k is the inertia weight, c1 and c2 are the acceleration constants, r1 and r2 are two

random numbers in the range [0, 1], xiðtÞ is the current position of the particle, pid is the best one of the solutions this

particle has reached, pgd is the best one of the solutions all the particles have reached.
For PSA algorithm, simulated annealing (SA) is used to improve the ability to escape from a local optimum. SA

is normally introduced as a heuristic approach to solve numerous combinatorial optimisation problems to replace

those schemes where the solution could get stuck on local optimum. In the search process, the SA accepts not only

better but also worse neighbouring solutions with a certain probability. Such mechanism can be regarded as a trial

to explore new space for new solutions, either better or worse. The probability of accepting a worse solution is larger

at higher initial temperature. As the temperature decreases, the probability of accepting worse solutions gradually

approaches zero. This feature means that the SA technique makes it possible to jump out of a local optimum to

search for the global optimum. The relative success of SA algorithm has been tapped by many researchers, who

discussed the useful, theoretical and practical details of SA (Lv et al. 2009, Pandey et al. 2006). In this study, the SA

technique is used to deal with every particle according to the following rules:

(1) If pid 4 pgd, accept pgd ¼ pid with the probability 1.
(2) If pid 5 pgd, accept pgd ¼ pid with the probability prob defined as:

prob ¼ 1� exp �
pgd � pid
temp

� �
ð17Þ

temp ¼ initemp� h ð18Þ

where prob is the probability, temp is the current temperature, initemp is a constant selected as initial temperature,

pid is the best one of the solutions this particle has reached, pgd is the best one of the solutions all the particles have

reached, and h is the current step number.
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The above treatment can increase the diversity in the particles and enable PSO to accept a good solution with
high probability. Through continuous evolution of these particles, the most optimal global solution (i.e. the most
optimal particle vector) can be obtained.

3.3.2 Combination of outputs of component multiclass SVMs

As for combining the predictions of component multiclass SVMs, the most prevailing approaches are plurality
voting or majority voting for classification tasks, and simple averaging or weighted averaging for classification tasks
(Zhou et al. 2002). In this study, the majority voting method is used to classify the source(s) of mean shifts.

4. Simulations and results

4.1 Training data

In order to evaluate the proposed approach, some simulation experiments have been conducted, in which the
multivariate normal training and testing data set is generated by Monte Carlo simulation. Mean shifts are
investigated for their shift magnitudes � from 1.0 to 3.0 in steps of 0.5 (total five �). The training dataset is
summarised in Table 1. For each �, 800 testing examples are generated in the same way as the generation of
training examples. Correct classification percentage (CCP), representing the ability of one classification system to
correctly classify the status of one process, is used as evaluation index to evaluate the performance of the developed
approach.

4.2 Parameters of PS-SVME

The performance of learning in PS-SVME is influenced by its relative parameters. There are no absolute rules for
tuning these key factors, which are dependent on the characteristics of the real-world problems. A number of factors
discussed possibly affect the performance of PS-SVME. These factors include different training data set, sample size,
number of component SVMs T, and number of particles etc. The relative parameters of PS-SVME, which achieved a
relatively better performance on the training dataset in this study, are summarised as follows.

(1) The number of all component multiclass SVM classifiers T: in the step of constructing PS-SVME, the
number of component SVMs, 2, 4, 8, 10, 16, 32 are considered.

(2) Kernel function: Gaussian radial basis function (RBF) Kðxi, yj Þ ¼ expð�
jjxi � yj jj
2Þ is used in this study,

and 
 ¼ 2.
(3) Penalty parameter: C¼ 10.
(4) The number of particles in PSA: when using PSA algorithm to select the subset from component SVMs, the

number of particles 5, 10, 15, 20, 25, 30, 35 and 40 are considered.
(5) The inertia weights: wmin equals 0.2 and wmax equals 0.8.
(6) The speed of particles: vmax equals 4 and vmin equals� 4.

Table 1. Types of data set.

Mean shift type Number of training examples Comments

q¼ 2 (�, 0) 4000 800 for each �
(0, �) 4000 800 for each �
(�, �) 4000 800 for each �

q¼ 3 (�, 0, 0) 4000 800 for each �
(0, �, 0) 4000 800 for each �
(0, 0, �) 4000 800 for each �
(�, �, 0) 4000 800 for each �
(�, 0, �) 4000 800 for each �
(0, �, �) 4000 800 for each �
(�, �, �) 4000 800 for each �
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(7) The initial velocities: the initial velocities of the initial particles are generated at random in the range ½�4, 4	.
(8) The study factors: c1 equals 2 and c2 equals 2.
(9) The initial temperature initemp is 0.55.

4.3 Performance analysis

4.3.1 The overall percentage of correct classification of PS-SVME

Table 2 presents classification results of PS-SVME trained and tested for different shift magnitudes in one bi-variate

process. The possible mean shifts are summarised for the following cases: shift in first variable, shift in second

variable, and shift in both variables. Columns 3 to 5 in Table 2 show the number of times PS-SVME

Table 2. Correct classification percentage (CCP) (%) for PS-SVME.

Abnormal pattern Shift magnitude

Actual classification results

CCP (%)(�, 0) (0, �) (�, �)

(�, 0) ð1:0, 0Þ 703 5 92 87.9
ð1:5, 0Þ 727 0 73 90.9
ð2:0, 0Þ 712 0 88 89.0
ð2:5, 0Þ 698 3 99 87.3
ð3, 0Þ 695 0 105 86.9

Average 707 1.6 91.4 88.4

(0, �) ð0, 1:0Þ 0 712 88 89.0
ð0, 1:5Þ 4 687 109 85.9
ð0, 2:0Þ 1 714 85 89.3
ð0, 2:5Þ 0 703 97 87.9
ð0, 3:0Þ 0 711 89 88.9
Average 1 705.4 93.6 88.2

(�, �) ð1:0, 1:0Þ 0 52 748 93.5
ð1:0, 1:5Þ 19 22 759 94.9
ð1:0, 2:0Þ 2 33 765 95.6
ð1:0, 2:5Þ 0 47 753 94.1
ð1:0, 3:0Þ 0 29 771 96.4
ð1:5, 1:0Þ 5 26 769 96.1
ð1:5, 1:5Þ 89 5 706 88.3
ð1:5, 2:0Þ 1 45 754 94.3
ð1:5, 2:5Þ 2 51 747 93.4
ð1:5, 3:0Þ 1 47 752 94.0
ð2:0, 1:0Þ 1 62 737 92.1
ð2:0, 1:5Þ 62 0 738 92.3
ð2:0, 2:0Þ 49 2 749 93.6
ð2:0, 2:5Þ 33 9 758 94.8
ð2:0, 3:0Þ 1 51 748 93.5
ð2:5, 1:0Þ 44 0 756 94.5
ð2:5, 1:5Þ 47 0 753 94.1
ð2:5, 2:0Þ 51 5 744 93.0
ð2:5, 2:5Þ 56 2 742 92.8
ð2:5, 3:0Þ 45 0 755 94.4
ð3:0, 1:0Þ 1 27 772 96.5
ð3:0, 1:5Þ 0 49 751 93.9
ð3:0, 2:0Þ 5 41 754 94.3
ð3:0, 2:5Þ 2 35 763 95.4
ð3:0, 3:0Þ 3 36 761 95.1
Average 20.76 27.04 752.20 94.04

Total 242.92 244.68 312.40 90.21
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approach reaches the corresponding classification patterns, and column 6 shows the correct classification
percentage (CCP).

The number of component SVMs T and particles in PSA is eight and 25 and other parameters are referred
to Section 4.2. The overall percentage of correct recognition of PS-SVME for first, second and third class of
abnormal pattern is 88.4, 88.2 and 94.04, respectively. The overall average CCP of PS-SVME is 90.21, which
indicates that the developed approach exhibits a strong ability to online identify which quality characteristic
variable’s mean shifts.

4.3.2 Sensitivity analysis to the number of the examples

In Sections 4.3.2 to 4.3.4, the influences of the key factors of PS-SVME on their generalisation performance are
analysed by implementing the following experiments. The analysis can help us to obtain the suitable parameter
setting to improve the generalisation performance of PS-SVME. In each of the following tests, only one factor is
varied while the remaining ones are kept constant.

Training sets of different sizes are generated to train PS-SVME. Table 3 and Figure 6 present the test results of
PS-SVME trained by different examples. From these results, one can find that increasing the training examples can
improve the performance of PS-SVME up to a certain level of accuracy. This could be explained by the fact that
with enough large training sets there is a better chance of true representation of a problem space. However, any
further increase of the training size after reaching such limits will not greatly improve the performance of PS-SVME.
Moreover, the larger training set results in higher time cost of training.

4.3.3 Sensitivity analysis to the number of multiclass SVM classifier T

The number of component multiclass SVM classifier T affects the performance of SVMs ensemble. Table 4 and
Figure 7 present CCPs for a different number of component multiclass SVM classifier T. The results show that
increasing T results in improved performance of PS-SVME. This may be explained by the fact that with more
component multiclass SVM classifiers there is a better chance of selection subsets for SVM ensemble. In this study,
the overall average CCP of PS-SVME is 90.21 when the number T is eight. Though PS-SVME has better
performance when T is bigger than eight (the overall average CCPs are 91.19, 92.08, 92.12 for the number T 10, 16,
32, respectively), a large T results in high time cost of training and testing, and it also decreases the effectiveness of
detecting out-of-control signals as quickly as possible. Therefore, the number of component multiclass SVM
classifier T for training PS-SVMN must be varied based on the balance between time cost and CCPs.

4.3.4 Sensitivity analysis to the number of particles in PS-SVME

One of the key factors affecting the performance of PS-SVME is the number of particles. Thus, it might affect the
generalisation performance of PS-SVME. As shown in Table 5 and Figure 8, increasing the number of particles
can improve the performance of PS-SVME. However, 25 particles are enough to find the optimal subset for
PS-SVME.

Table 3. CCPs of PS-SVME for different number of training examples (q¼ 2, � ¼ 0:6).

Training examples

CCP

Average(�, 0) (0, �) (�, �)

500 79.41 79.95 83.23 80.86

1000 80.29 80.81 84.26 81.79

2000 83.32 83.95 87.49 84.92

3000 85.08 85.81 90.01 86.97
4000 88.40 88.20 94.04 90.21

5000 89.45 90.11 94.78 91.45

5500 89.65 89.99 94.88 91.51
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4.3.5 Comparison analysis for PS-SVME, single SVMs and Ensemble ALL

In order to further evaluate the performance of the PS-SVME, it is compared with other SVMs approach including

single SVMs and Ensemble ALL in the bi-variate process with � ¼ 0:6. Table 6 presents the CCPs for PS-SVME, the

best single multiclass SVM classifier (i.e. the component multiclass SVM classifier fi showing the best performance)

and Ensemble ALL (i.e. ensemble all component multiclass SVM classifier f1, f2, . . . , fT).
It should be noted that one component multiclass SVM classifier is actually one SVM classifier for the bi-variate

process (q¼ 2) since it is one binary classification process, and also be noted that the results are the average of

three abnormal classes of patterns for each shift magnitude. The overall average percentage of correct recognition of

PS-SVME, the best single multiclass SVM classifier, and Ensemble ALL is 90.21, 86.57, and 88.81 in

bi-variate process (q¼ 2, � ¼ 0:6), respectively. These results show that PS-SVME outperform the best single

multiclass SVM classifier by 4.04% and Ensemble ALL by 1.55%. This proves that PS-SVME has better

performance compared with those of the commonly used single multiclass SVM classifier approach and Ensemble

ALL approach.
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Figure 7. The average CCPs of PS-SVME for different
multiclass SVM classifier T.

Table 4. CCPs of PS-SVME for the number of multiclass
SVM classifier T (q¼ 2, � ¼ 0:6).

T

CCP

Average(�, 0) (0, �) (�, �)

2 80.91 81.35 86.32 82.86

4 83.29 83.27 85.71 84.09
8 88.40 88.20 94.04 90.21

10 88.32 89.45 95.80 91.19

16 90.21 89.56 96.47 92.08

32 89.45 90.11 96.80 92.12500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
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Figure 6. The average CCPs of PS-SVME for different
number of training examples.

Table 5. CCPs of PS-SVME for the number of particles
(q¼ 2, � ¼ 0:6).

T

CCP

Average(�, 0) (0, �) (�, �)

5 84.27 84.65 90.34 86.42
10 86.01 86.17 90.65 87.61

15 87.28 87.41 92.34 89.01

20 88.31 88.07 92.96 89.78

25 88.40 88.20 94.04 90.21
30 88.95 88.52 94.12 90.53

35 88.98 89.63 94.00 90.87

40 89.05 90.02 93.69 90.92
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4.3.6 Performance analysis for processes with three variables

In this section, the proposed approach is used to analyse the correct classification percentage in a process with three

quality variables. For this simulated process, the reference mean vector and variance-covariance matrix are

k0 ¼

0

0

0

2
64

3
75 R ¼

1 0:6 0:6

0:6 1 0:6

0:6 0:6 1

2
64

3
75

In order to study the influences of the number of quality variables upon the performance of the proposed

approach, a simulated bi-variate process is also considered in this simulation experiment. For this simulated bi-

variate process, the reference mean vector and variance-covariance matrix are

k0 ¼
0

0

	 

R ¼

1 0:6

0:6 1

	 


To monitor the out-of-control signals of mean shifts, the T2 control chart with the type I error � ¼ 0:5% is used.

The training and testing dataset are generated and shown in Section 4.1. The possible mean shifts are summarised

for the following cases: type A, one variable mean shifts; type B, two variables means shift; type C, three variables

means shift.
Table 7 presents the results for the two-variable case and the three-variable case. It can be observed that the

percentage of correct classification for the proposed approach is decreased when it is used for the three-variable

case, which proves that the number of quality variables in a process affects the performance of the proposed hybrid

learning-based approach. However, the proposed approach also does well in the three-variable case. Therefore, the

proposed approach can be generalised to multivariate processes.

4.4 Performance comparison with other work

As stated in the introduction, the decomposition approach based mostly on T2 statistic (Mason et al. 1995, 1997,

Li et al. 2008, Verron et al. 2010) and neural networks approach (Pugh 1989, Smith 1994, Cheng 1995, Chang and

Aw 1996, Cook and Chiu 1998, Chang and Ho 1999, Ho and Chang 1999, Cook et al. 2001, Hwarng 2004, Pacella

2004, Niaki and Abbasi 2005, 2008, Guh 2007, Yu and Xi 2009, Du and Xi 2010) are two of most classical and
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Figure 8. The CCPs of PS-SVME for the different number of
particles.

Table 6. Comparison of CCPs for different approaches
(q¼ 2, � ¼ 0:6).

Approaches

CCP

Average(�, 0) (0, �) (�, �)

PS-SVME 88.40 88.20 94.04 90.21

Best single multiclass
SVM classifier

85.28 85.30 89.14 86.57

Ensemble ALL 87.41 87.67 91.35 88.81

Table 7. Comparison of CCPs of PS-SVME for bi-variate
process and three-variables process.

Approaches

CCP

Type A Type B Type C

The bi-variate process 88.30 94.04 N/A
The process with three variables 85.79 86.21 89.07
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popular approaches in classifying the source(s) of the mean shifts in the published works. Therefore, in this section,
the proposed approach is compared with these two kinds of approaches.

4.4.1 Comparison with MTY decomposition

Classifying the source(s) of mean shifts can also be done using decomposition approaches. One of most important
decomposition approaches is the Mason-Tracy-Yong (MTY) decomposition approach (Mason et al. 1995, 1997).
The main idea behind this approach is to decompose the T2 statistic into independent and orthogonal parts, each of
which reflects the contribution of an individual variable. The main drawback of the MTY approach is that the
decomposition of the T2 statistic into p independent T2 components is not unique as p! different non-independent
partitions are possible (Bersimis et al. 2007), which results in extensive computation.

The performance of the MTY approach was tested by Aparisi et al. (2006) using different shift type, magnitude
of the shift, the sample sizes, etc. Two phases are used to implement the simulations. A bi-variate process with
standard normal distribution is simulated in phase I by generating N ¼ k� n ¼ 100 (i.e. using k samples with size n)
values for the in-control condition, and different correlation coefficients � are considered (i.e. � ¼ 0:2, 0:4, 0:6, 0:8)
in the simulation experiments. The in-control mean vector is shifted to simulate an out-of-control signal. The
components of the out-of-control mean vector �1 are computed to obtain the required Mahalanobis distance d
between this vector and the in-control mean vector, where

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � �0ð Þ

0
X�1
0

�1 � �0ð Þ

vuut :

Aparisi et al. (2006) simulated the shifts given the value of the Mahalanobis distance d, as shown in Figure 9.
Five cases (i.e. five out-of-control T2 statistics) for each combination of the � and d are generated for testing the
performance of the MTY approach. For more details, ones are referred to the work (Aparisi et al. 2006).

In order to further evaluate the performance of the PS-SVME approach, it is compared with the MTY approach
using the type I error � ¼ 3 % and the sample size is 3. Once T2 control chart gives an abnormal alarm for a signal,
it is fed to PS-SVME immediately to identify the variables that have shifted. The training dataset is generated in the
same way as the generation of training dataset in Section 4.1. The parameters of PS-SVME are same as those in
Section 4.2.

Table 8 presents the comparison results of the PS-SVME approach with those of the MTY approach provided
by Apasisi et al. (2006) when all the various Mahalanobis distances (shown in Figure 9) and correlation coefficient
values (i.e. � ¼ 0:2, 0:4, 0:6, 0:8) are considered in the simulation experiments. The overall percentages of correct
classification of the PS-SVME approach and the MTY approach are shown in the last row of the table, respectively.
The MTY approach outperforms the PS-SVME approach in cases of the abnormal model (�1 
 �,�2 
 �), i.e. shift
type S1, S2, S5, and S7. These points correspond to the cases where both variables shift. The PS-SVME
approach outperforms the MTY approach in cases of abnormal model (�1 
 �,�2) and (�1,�2 
 �), i.e. shift
type S3, S4, S6 and S8. These points correspond to the cases where only one variable shifts. These results
demonstrate that the PS-SVME approach has the capability to identify source(s) of process mean vector in the
bi-variate process.

4.4.2 Comparison with neural networks

Another one competing approach is neural network approach. In order to further evaluate the performance of the
proposed approach, it is compared with some classical NNs classifiers including probabilistic neural networks
(PNN) (Specht 1990), radial basis function neural networks (RBFNNs) (Chen 1991) and multilayered perceptron
(MLP) neural networks (Pal and Mitra 1992) with different training algorithm such as back propagation (BP)
learning algorithm and with the resilient propagation (RP) learning algorithm. They comprise parameters that
should be readjusted in any new classification. Furthermore, those parameters regulate the classifiers to be best
fitted in the classification task. In most cases, there is no classical method for obtaining their values, and therefore
they are experimentally specified through try and error. The comparison result for one bi-variate process is indicated
in Table 9. It can be seen from Table 9 that the proposed approach in this study outperforms the PNN recogniser by
4.17%, RBFNN by 4.42%, MLP (BP) by 5.35%, and MLP (RP) by 5.21%. These results prove that the proposed
approach has better performance compared with those of the commonly used NNs approach.

International Journal of Production Research 6303

D
ow

nl
oa

de
d 

by
 [

Sh
an

gh
ai

 J
ia

ot
on

g 
U

ni
ve

rs
ity

] 
at

 0
7:

05
 1

6 
O

ct
ob

er
 2

01
7 



5. A case study

To further validate the effectiveness of the developed approach, its real application in an aircraft horizontal

stabiliser assembly process for monitoring and identification of process mean shifts is illustrated. Most components

of an aircraft have a very high demand of high quality, reliability, and low variation. Aircraft horizontal stabiliser is

one of these most important components and has very strict dimensional specification. The assembly processes can

directly affect the reliability and performance of the final aircraft. However, the complexity of aircraft horizontal

stabiliser assembly processes make it very difficult to efficiently identify the mean shifts depend solely on control

charts and the operator’ experience. The immediate location of abnormal variation sources in aircraft horizontal

stabiliser assembly processes can greatly narrow down the set of possible root causes, facilitating rapid analysis and

corrective action by quality engineers.

5.1 Product and assembly process

Figure 10 shows a computer-aided design (CAD) model of an aircraft horizontal stabiliser, which is mainly

composed of two beams (front beam and back beam), two rear spars (front rear spar and back rear spar) and several

webs. There are a total of 16 measurement points (eight measurement points on front beam and back beam,

respectively) numbered in the CAD model. Among these 16 measurement points, six measurement points are most

important (C, D, and E on front beam and back beam, respectively) called key product characteristics (KPCs),

which directly affect the final dimensional quality and product reliability of aircraft horizontal stabiliser. These six

measurement points are observed and monitored based on the developed online monitoring and classification

approach. If the system gives the alarm of mean shifts, quality variables causing the alarm can be identified online.
Figure 11 is the fixture layout in horizontal stabiliser assembly process. Firstly, the rear spars are loaded and

located into fixture system, and is completed by assembling two rear spars into one rear spar component. Then the

Table 9. Recognition performance comparison of PS-SVME with other approaches.

Approach Parameters CCR (%)

PNN Spread¼ 50 86.45
RBFNN Spread¼ 64, goal¼ 0.01 86.22
MLP(BP) Hidden neurons¼ 32 85.38
MLP(RP) Hidden neurons¼ 24 85.51
PS-SVME The number of particles is 20; T¼ 8; other parameters are referred to Section 4.2 90.21

Table 8. Comparison of CCPs between PS-SVME and MTY
approach for bivariate process.

Shift type

Correct classification percentage (CCP, %)

PS-SVME approach MTY approach*

S1 84.54 86.02
S2 67.71 71.35
S3 78.20 39.06
S4 88.07 31.25
S5 71.19 74.02
S6 64.38 42.79
S7 78.42 82.29
S8 73.25 32.08

Average 75.72 57.36

*Results are from Aparisi et al. (2006).
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Figure 9. The simulated shift types in the bi-variate
process.
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webs are loaded, located, clamped and assembled into the rear spar component. Finally, two beams are located and

assembled. The six KPCs are formed on the aircraft horizontal stabiliser.

5.2 Normality test of data set

The 1500 samples for front beam and back beam from real-world assembly processes are collected respectively.

Since the front beam and back beam are assembled independently, the three measurement points (three variables,

q ¼ 3) of KPCs on front beam and back beam are monitored and identified independently. The generated data set in

simulation experiments of Section 4 follows the multivariate normal distribution through the computer programs;

however, the normality of the collected data set from real-world processes needs to be checked.
According to the steps described in Section 2.2.1, the square distances d 2

j ¼ ðxj � �xÞ0S�1ðxj � �xÞ are calculated

and the chi-square plot is presented in Figure 12 (front beam) and Figure 13 (back beam). Figure 12 (a) and

Figure 13 (a) present the complete chi-square plot within the range [0, 1500]; meanwhile, Figure 12 (b) and

Figure 13 (b) present the tailored chi-square plot within the range [60, 80]. From these chi-square plots, it is shown

that the data set quite follows multivariate normal.

Figure 11. Fixture scheme in aircraft horizontal stabiliser assembly process.

Figure 10. CAD model of aircraft horizontal stabiliser and key product characteristics.
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5.3 Classifying results

This section reports the initial results of applying developed approach into a real aircraft horizontal stabiliser
assembly process. In order to further validate the proposed PS-SVME approach, not only the abnormal state (i.e.
process mean shifts) but also normal state is considered in this case. Therefore, the output modes can be divided into
four categories: normal mode (Ao), one quality variable mean shifts (A1, A2, A3), two quality variables means shift
(A4, A5, A6), and three variables means shift (A7).

Tables 10 and 11 present the output results of the CCP for front beam and back beam KPCs using PS-SVME.
Columns 1 to 4 in Tables 10 and 11 show output mode, actual number of times the aircraft horizontal stabiliser
assemble process reaches the output mode, the numbers of right classification by PS-SVME and CCP, respectively.
The overall percentage of correct recognition for front beam and back beam KPCs is 98.57% and 98.33%
respectively, indicating that the developed system exhibits a strong ability to online identify which quality
characteristic variable’s mean shifts in the aircraft horizontal stabiliser assembly process.

6. Conclusion and future work

In a MP, classifying the source(s) of mean shifts has been a challenging task for traditional MSPC techniques.
New approaches need to be developed to accommodate rapid data input rate, and classify the source(s) as soon as
possible. In this study, one novel hybrid learning-based approach is explored for classifying the source(s) of
mean shifts in MP. By implementing two steps (i.e. creation of component multiclass SVMs and selection of
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2 j
d

Qc,3 ((j−1/2)/1500)
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2 jd

Figure 12. The normality test of the data set for front beam. (a) The complete chi-square plot within the range [0, 1500] for front
beam. (b) The tailored chi-square plot within the range [60, 80] for front beam.
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optimal subsets), PS-SVME that ensembles accurate and
diverse component multiclass SVMs is developed. The simulation results indicate that PS-SVME shows improved
generalisation performance, which outperforms those of single best SVMs and ensemble all approach. Moreover,
the influences of some key parameters of PS-SVME upon its generalisation are analysed, which aims to find the
suitable parameters for constructing PS-SVME. The effectiveness of the developed approach is further validated
through the data from the real-world aircraft horizontal stabiliser assembly processes. The analysis from this study
provides guidelines in developing selective multiclass SVMs ensemble-based MSPC recognition systems in
multivariate processes.

The existing problem for the proposed approach is that although the effectiveness of the proposed approach
has been validated in the processes with two and three variables, its effectiveness needs to be further validated in the
processes with four or more variables. Further work also can focus on finding out the better optimisation
algorithms to find an optimal subset of parameters of SVMs classifier. Another further investigation can be done to
apply the proposed approach into monitoring and classifying the covariance changes, which is also important
in MSPC, since the proposed approach only monitors and classifies the shifts of process mean in this study.
Moreover, in the future more industry cases should be collected in order to further validate and improve the
proposed approach.

Acknowledgements

The authors greatly acknowledge the editor and the referees for their valuable comments and suggestions that have led to a
substantial improvement of the paper. This work was supported in part by the National Natural Science Foundation of China

60 62 64 66 68 70 72 74 76 78 80
55

60

65

70

75

80

85

2 jd

0 100 200 300 400 500 600
0

100

200

300

400

500

600
2 jd

Qc,3 ((j−1/2)/1500)

Qc,3 ((j−1/2)/1500)

(a)

(b) 

Figure 13. The normality test of the data set for back beam.
(a) The complete chi-square plot within the range [0, 1500] for
back beam. (b) The tailored chi-square plot within the range
[60, 80] for back beam.

Table. 11. CCPs for back beam KPCs using PS-SVME.

Output
mode

Actual
number

The numbers of
right classification CCP%

A0 1380 1380 100.00
A1 17 17 100.00
A2 20 19 95.00
A3 12 12 100.00
A4 24 22 91.67
A5 25 25 100.00
A6 21 21 100.00
A7 1 1 100.00

Average 98.33

Table 10. CCPs for front beam KPCs using PS-SVME.

Output
mode

Actual
number

The numbers of
right classification CCP%

A0 1387 1387 100.00
A1 13 13 100.00
A2 17 16 94.12
A3 25 25 100.00
A4 26 26 100.00
A5 11 11 100.00
A6 18 17 94.44
A7 3 3 100.00

Average 98.57
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Appendix

Assume the covariance matrix is denoted by:

D ¼ EðX� kÞðX� kÞ0 ¼

�11 �12 � � � �1q

�12 �22 � � � �2q

..

. ..
. . .

. ..
.

�1q �2q � � � �qq

2
66664

3
77775 ðA1Þ

The correlation coefficient �ij is defined in terms of the covariance �ij and variances �ii and �jj as

�ij ¼
�ijffiffiffiffiffi

�ii
p
�

ffiffiffiffiffi
�jj
p ðA2Þ

Let the population correlation matrix be the q� q symmetric matrix:

� ¼

�11ffiffiffiffiffi
�11
p ffiffiffiffiffi
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�12 1 � � � �2q
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�1q �2q � � � 1

2
66664

3
77775 ðA3Þ

And let the q� q standard deviation matrix be

V1=2 ¼

ffiffiffiffiffiffiffi
�11
p

0 � � � 0

0
ffiffiffiffiffiffiffi
�22
p

� � � 0
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. . .
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2
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3
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Thus,
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Thus, V1=2qV1=2 ¼ D.
Therefore, without loss of generality, if all variables have mean zero and variance one, the covariance matrix is in correlation

form, namely, the main diagonal elements are all one and the off-diagonal elements are the pair-wise correlation (�) between the
process variables.

D ¼ R ¼

1 �12 � � � �1q

�12 1 � � � �2q

..
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. . .

. ..
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R is a general correlation matrix. For example, if there exist two variables with mean R zero and variance one, then,

V1=2qV1=2 ¼
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Namely, R ¼
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