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Abstract To improve product quality and productivity, one
of the most critical factors for most manufacturers lies in
quickly identifying root causes in machining process during
ramp-up and production time. Though multivariate statisti-
cal process monitoring techniques using control charts have
been successfully used to detect anomalies in machining pro-
cesses, they cannot provide guidelines to identify and isolate
root causes. One novel robust approach for root causes iden-
tification (RCI) in machining process using hybrid learning
algorithm and engineering-driven rules is developed in this
study. Firstly, off-line pattern match relationships between
fixture fault patterns and part variation motion patterns are
derived. Then, a hybrid learning algorithm is explored for
identifying the part variation motion patterns. An unknown
root cause is identified and isolated using the output of hybrid
learning algorithm and engineering-driven rules. Finally, the
data from the real-world cylinder head of engine machining
processes are collected to validate the developed approach.
The results indicate that the developed approach can perform
effectively for identifying root causes of fixture in machining
processes. All of the analysis from this study provides guide-
lines in developing root causes identification systems based
on hybrid learning algorithm and engineering knowledge.
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Introduction

One of the most critical factors and barriers in the develop-
ment and operation of modern machining processes lies in
largely identification of root causes during ramp-up and pro-
duction time (Du et al. 2008; Huang et al. 2008). Identifying
root causes as quickly as possible can greatly improve prod-
uct quality and productivity. Though multivariate statistical
process control (MSPC) using control charts can effectively
monitor anomalies in machining processes (Montgomery
2005; Ertuğrul and Aytaç 2009), they cannot provide guide-
lines to identify and isolate the root causes.

In Fig. 1, if position or diameter of fixture locator deviates
from the nominal design in a machining process, then, conse-
quently, the machined part will not be in its nominal design
position. Mislocations of the locator can be manifested by
mean shift or variance change in the product measurement
data. For example, the variance change of the product mea-
surement data can be caused by a variation of the location of
a locator, due to locator worn-out or the excessive looseness
of locator. The quality variables measurements are collected
and input into multivariate control charts. If out-of-control
signals are shown in control charts, the locator of fixture devi-
ating from the nominal design, called “root cause”, cannot be
easily identified for most of the cases. Though multivariate
control charts are widely used as effective tools to detect an
unusual event, they do not directly provide the information
required by a practitioner to identify the root causes.

The available root causes identification (RCI) methods
in manufacturing processes can be roughly divided into three
classes: (i) engineering-model-based methods, (ii) knowl-
edge-based methods, and (iii) intelligent-learning-based
methods. In engineering-model-based methods, an engineer-
ing mathematical model integrating product quality infor-
mation and root causes information firstly is built, and then
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Fig. 1 Root causes in a machining process

the variances of root causes are estimated in the engineer-
ing model (McCulloch and Searle 2001; Zhou et al. 2004).
However, the effectiveness of these methods relies heavily on
the accuracy of the model. Moreover, the engineering-model-
based methods need a thorough understanding of the physics
of the process to build the process model, which is usually
very difficult, if not impossible, for a complex system (Shi and
Zhou 2009).

As for the knowledge-based methods, some research
efforts are also reported. A systematic method of identify-
ing failing stations and faulty parts in assembly processes is

described (Ceglarek et al. 1994). A root causes diagnostic
reasoning and decision approach through the combination of
data mining and knowledge discovery techniques is devel-
oped (Lian et al. 2002). However, the prior knowledge for
the knowledge-based methods has to be collected.

Recently, intensive research has been conducted into the
use of neural networks (NNs) as an effective tool to improve
product quality since neural networks (NNs) have excellent
noise tolerance in real time, requiring no hypothesis on statis-
tical distribution of monitored measurements. These impor-
tant features make NNs promising and effective tools that can
be used to improve data analysis in manufacturing quality
control applications. Neural networks are utilized for pattern
recognition in quality control charts (Bargash and Santarisi
2004; Jiang et al. 2009). After detecting such patterns, it
is possible to relate these patterns to their root causes before
the process may produce defective parts. Research efforts are
also devoted to detect the changes in mean and/or variance
of product quality using neural networks through classify-
ing out-of-control signals in control charts (Das and Prakash
2008; Guh 2007; Wang and Chen 2002). Though these meth-
ods can detect the changes of patterns in control charts or
changes in mean and/or variance of product quality, they
cannot identify the root causes causing these changes.

Therefore, in this study a novel robust approach for RCI
in machining processes is developed, which integrates prod-
uct and fixture design, on-line dimensional measurements,
neural networks ensemble technique as well as engineering-
driven rules. The developed method is presented in three
parts. Firstly, off-line patterns relationships between the fix-
ture fault patterns and part variation motion patterns are
derived based on engineering knowledge including fixture
layout, measurement information, and product design. Once
the part variation motion patterns using control chart are rec-
ognized, the unknown root causes in fixture can be identified
and isolated quickly through the off-line patterns relation-
ships. However, recognition of the part variation motion pat-
terns is not an easy problem to solve. Due to high recognition
power of NN ensembles (Breiman 1996; Hansen and Sala-
mon 1990; Zhou et al. 2002), in the second part, an improved
Particle swarm optimization with Simulated annealing-based
selective Neural network ensemble (PSN) algorithm is devel-
oped for classifying the part variation motion pattern trigger-
ing the out-of-control signals of control chart. Utilization of
selective NN ensemble based on particle swarm optimization
with simulated annealing aims to improve the generalization
performance of neural-system in comparison with using sin-
gle NN recognizers, and to improve the ability to escape from
a local optimum. Finally, an unknown root cause in fixture
is identified and isolated using the output of PSN algorithm
and engineering-driven rules.

The rest of this paper is organized as follows. Section
“Overview” presents the overview of the methodology. The
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patterns relationships between fixture fault patterns and
part variation motion patterns are derived in sect. “Patterns
relationships”. PSN algorithm is explored in sect. “PSN
algorithm”. The identification procedure using output of
PSN algorithm and engineering-driven rules is developed
in sect. “Identification procedure” and an illustrated exam-
ple from real-world is illustrated and the performance of
the explored approach is analyzed and evaluated in sect.
“Case study”. Finally, the conclusions are given in sect.
“Conclusions and discussions”.

Overview

This section provides a practical overview with respect to
identifying root causes in fixture in machining processes.
This study is concerned with product variability increase
with assumption that the product mean is not changed.
Assume there are q part dimensional measurement points
for a workpiece X1, X2, . . . Xq need to be monitored, which
is expressed as one vector X = (X1, X2, . . . Xq). When
increases δ occur at time tp, the observations of measure-
ment points vector X can be expressed as follows:

X(t) = µ0 + K(t) + δ(t, tp) (1)

where

X(t) : part dimensional measurement points vector
observed at time t ;

µ0 : the mean of measurement points vector, µ0 =
(μ1, μ2, . . . μq) when the process is under con-
trol, which is assumed as one constant in this
study;

K(t) : N (0,�0), multivariate normal distribution;
�0 : the covariance of measurement points vector

when the process is under control;
δ(t, tp) : (δX1 + σX1 , δX2 + σX2 , . . . . . . δXq + σXq ), δX j

is the magnitude of increases in terms of σX j ,
which is the standard deviation of j th measure-
ment point.

For example, in a bivariate process, X(t) follows N (µ0,

�0) when the process is under control. The covariance matrix
�0 can be expressed:

�0 =
[

σ 2
X1

σX1 X2

σX1 X2 σ 2
X2

]
(2)

There are three abnormal classes of patterns for a bivar-
iate process: (1) the variance of first measurement point is
increased (δX1 + σX1 , σX2); (2) the variance of second mea-
surement point is increased (σX1 , δX2 + σX2); (3) the var-
iance of both two measurement points is increased (δX1 +
σX1 , δX2 + σX2).

The architecture of the robust RCI approach in machin-
ing process is shown in Fig . 2, in which four modules are
in series: Module I, Module II, Module III, and Module IV.
Module design divides the complex original problem into
more manageable sub-problems, which are solved effectively
by using different sub-systems.

Module I builds the off-line patterns relationships between
the fixture fault patterns and the part variation motion pat-
terns. When an unknown fixture fault occurs in a machining
process, it usually causes one or some part variation motion
patterns. In order to identify the root cause in fixture, it firstly
needs to on-line monitor the part dimensional measurements
and identify the part variation motion patterns. Therefore,
Module II is used for monitoring the part dimensional mea-
surement points and judging whether the process is under
control. Montgomery (2005) evaluated several statistics for
controlling the variances in a process, and took |S| control
method as the one of most excellent control chart for process
variability. Therefore, |S| control chart is used in this study
for monitoring the variance of part dimensional measurement
points.

Module III is responsible for identifying the part variation
motion patterns. When an out-of-control signal is detected
by |S| control chart, PSN will wait for more observations
(i.e. half of the size of the moving window) from the process
and then identify the part variation motion patterns triggering
the out-of-control signals. The purpose of this procedure is
to include more abnormal points in the recognition window,
so that more abnormal features can be exposed to the recog-
nizer. The size of an analytical window determines the effect
of neural networks on monitoring the abnormal variations.
The more abnormal points are included in the recognition
window, the more accurate the recognition will be. Ideally,
waiting for the points of the whole size of the window will
guarantee that a full abnormal pattern is presented to PSN.
However, for monitoring and identifying out-of-control sig-
nals, a very important aim is to identify abnormal signals as
soon as possible. Thus, waiting for several observations (i.e.,
half of the size of the moving window) is suitable for this aim.
Module IV builds the identification procedure, which iden-
tify root causes using output of PSN and engineering-driven
rules.

Patterns relationships

Fixture fault patterns

Fixtures are used to locate and hold workpiece in machin-
ing processes, thus fixture failure can directly affect part
location and the final product dimensional quality. In gen-
eral, fixture elements can be classified by their functional-
ity into locators and clamps. Locators establish the datum
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Fig. 2 RCI based on
engineering knowledge and PSN
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reference frame and provide kinematic restraint. Clamps
provide additional restraint by holding the part in position
under the application of external forces during the machin-
ing process.

For a rigid part, the most common fixture layout method
is 3-2-1 principle, which locates a part by three groups of
locators laid out in two orthogonal planes. One 3-2-1 fix-
ture and measurement layout is shown in Fig. 3. A four-
way pin P1(xP1 , yP1 , zP1) is used to precisely position the
part in two directions (X and Y direction), and a two-
way pin P2(xP2 , yP2 , zP2) is used to locate the part in one
direction (Y direction) in the first plane, respectively. All
remaining NC blocks (C1, C2 and C3) are used to locate
the part in the second plane (Z direction). Assume all mea-
surement gages use the same Cartesian coordinate system,
which makes it easy to use and compare data from different
gages. The manifestation of the pins P1, P2 and/or NC blocks
failures is represented by part dimensional measurement
points M1(xM1 , yM1 , zM1), M2(xM2 , yM2 , zM2), M3(xM3 ,

yM3 , zM3) and their standard deviations σM1 , σM2 and σM3 .
For example, pin P2 controls part motion in the Y direction.
Failure at P2 can be represented as a rotation of the part
around P1(P ′

2(xP ′
2
, yP ′

2
, zP ′

2
) in Fig. 3), thus M1, M2 and M3

will also rotate around Z axis and have standard deviations
σM1 , σM2 and σM3 .

Table 1 summarizes the six hypothetical fixture fault pat-
terns, in which the arrows represent the direction of part mis-
location due to the fault of P1, P2 and NC blocks. There are
two kinds of motion for failing locators: translation and rota-
tion. The failing pin P1 in X axis makes the fixture translate
in X axis, failing pin P1 or P2 in Y axis makes the fixture
rotate, and the failing NC block in Z axis makes the fixture
rotate around the line between the remaining two NC blocks,
respectively.

1Mσ
2Mσ

1 1 11( , , )M M MM x y z2 2 22 ( , , )M M MM x y z

3 3 33 ( , , )M M MM x y z3Mσ
1 1 11( , , )P P PP x y z

NC blocks

2 2 22 ( , , )P P PP x y z

2 2 22 ( , , )P P PP x y z′ ′ ′′

O X

Y

O X

Z

1C
2C 3C

Top view

Side view

Fig. 3 A 3-2-1 fixture and measurement layout

Part motion variation patterns

In a general case, all rigid body part variation motion can
be described through six patterns (as shown in Fig. 4), i.e.,
translations along X, Y , and Z axis (Tx , Ty , and Tz), and rota-
tions around X, Y , and Z axis (Rx , Ry , and Rz), respectively.
These six patterns are generic and complete, namely, all rigid
part variation motions can be described through these six pat-
terns or their combinations, regardless of the measurements
layout. More important, these patterns are mutually orthog-
onal, which make it possible to uniquely identify them from
one another even if they coexist.

Patterns map process

If significant variation motion patterns of Tz and Ry with
a strong negative correlation between their components,
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Table 1 Relationships between fixture fault patterns and variation manifestation

Fault patterns Failing locator Variation manifestation

Type-1 F1 Failing P1in X axis

O X

Y

1P 2P

Type-2 F2 Failing P1in X axis

O X

Y

1P
2P

Type-3 F3 Failing P2in Y axis

O X

Y

1P 2P

Type-4 F4 Failing C1 in Z axis

1C

2C

3C

Type-5 F5 Failing C2 in Z axis

1C

2C

3C

Type-6 F6 Failing C3 in Z axis

1C

2C

3C

Fig. 4 Variation motion
patterns for rigid body part Tx

Ty
Tz(a) (b) (c)

Rx
Ry

Rz(d) (e) (f)

123



1838 J Intell Manuf (2012) 23:1833–1847

geometrically it means that whenever the part has a transla-
tion in the Z direction, and it rotates around the Y axis coun-
terclockwise. These two simultaneous motions combined are
actually equivalent to varation pattern F4 (refer to Table 1,
Figs. 3, 4). As studied by Liu and Hu (2005), this pattern
map process can be described as follows:

Tz ⊕ Ry ⊕ Cor
(

Tz, R−1
y

)
⇒ F4 (4)

where ⊕ represents logic operator “AND”, Cor
(

Tz, R−1
y

)
denotes a strong correlation between the patterns Tz and
inverse Ry , and R−1

y is inverse of Ry , respectively. With sim-
ilar inference, all pattern map relationships between rigid
body part variation motion patterns and fixture fault patterns
can be found as follows:

Tx ⇒ F1 (5)

Rz ⊕ Tx ⊕ Ty ⊕ Cor
(
Tx , Ty

) ⊕ Cor (Tx , Rz) ⊕ Cor(
Ty, Rz

) ⇒ F2 (6)

Rz ⊕ Tx ⊕ Ty ⊕ Cor(Tx , Ty) ⊕ Cor
(

Tx , R−1
z

)

⊕Cor
(

Ty, R−1
z

)
⇒ F3 (7)

Rx ⊕ Tz ⊕ Cor
(

Tz, R−1
x

)
⇒ F5 (8)

Rx ⊕ Ry ⊕ Cor
(
Rx , Ry

) ⇒ F6 (9)

The map model builds the exact relationships between part
variation motion patterns and fixture fault patterns. Thus, in
order to identify the root cause in fixture, one needs firstly to
analyze the part variation patterns through on-line measure-
ments of parts.

PSN algorithm

NN ensemble framework

NN ensemble originating from Hansen and Salamon’s work
(Hansen and Salamon 1990) is a learning paradigm where
a collection of several NNs is trained for the same task. It
shows significantly improved generalization performance,
which outperforms those of single NNs (Breiman 1996; Zhou
et al. 2002). Since this technology behaves remarkable well,
NN ensemble has been widely studied and already been suc-
cessfully applied to various areas such as medical diagnosis
(Zhou et al. 2002), weather prediction (Maqsood et al. 2004),
and face recognition (Gutta and Wechsler 1996), etc. How-
ever, no researches have been conducted to apply NN ensem-
ble techniques into RCI in fixture in machining processes.

Figure 5 illustrates the basic framework of an NN ensem-
ble used in this study. Instead of attempting to design an
ensemble of independent NNs directly, several “candidate”
NNs are initially created. Given such some networks, through

Input

Neural Network 1 Neural Network 2 Neural Network M

PS(select an optimal subset)

Combining “good” outputs

Fig. 5 Basic framework of NN ensemble

using an improved Particle swarm optimization algorithm
with Simulated annealing (PS) technique, PSN aims to select
the optimal subset formed by accurate and diverse networks
and obtain a better ability to escape from the local optimum.
Then, the predicted outputs of each of these NNs are com-
bined to produce the output of the ensemble.

PSN design

The detailed design algorithm of PSN consists of three major
steps: creation of “candidate” networks by using Bagging
method, selection of subset from the “candidate” networks
by using PS algorithm, and combining predictions of com-
ponent networks in the ensemble. PSN can be described in
Fig. 6, and the details of PS technique is explained further in
the following sub-sections.

“Candidate” NNs creation

Creation stands for the process of creating a number of dif-
ferent individual networks, which then constitutes the pool of
available networks. For ensemble to be effective, the compo-
nent NNs in the ensemble should be as accurate and diverse
as possible. There are a number of different ways to achieve
this, for example, training networks by varying different ini-
tial conditions, varying the topology or algorithm involved.
The most prevailing approaches are Bagging and Boosting.
Bagging is proposed based on bootstrap sampling (Breiman
1996). It generates several training sets from the original
training set and then trains a component neural network from
each of those training sets. Boosting is proposed in (Schapire
1990). It generates a series of component neural networks,
in which training sets are determined by the performance of
former ones. Training instances that are wrongly predicted
by former networks will play more important roles in the
training of later networks. In this study, Bagging method is
used for creating “candidate” networks.
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Fig. 6 Design algorithm of
PSN Input: Training data set T, validation data set V, learner f, trials N, parameters of PS. 

Procedure: 

For i=1 to N { 

          Ti=Pre-stage’s T (i>1) {examples bootstrap sample from T} 

fi=f(Ti) is trained and then is involved 

T=Some examples of Ti, which are predicted wrongly by fi

} 

Implement PS algorithm to obtain the optimal particle vector v on the validation data set V. 

where the fitness function is fitness. 

Output: ensemble f opt

1, ( )

1
( ) arg max 1

i i

opt

v f x y

f x
M = =

= ∑ ( y Y∈ ) (M NN are selected for ensemble)

Hidden Layer (5-30)

Input Layer 

Output Layer 

X1 X2 X3 X4 X(n+6)*q-3 X(n+6)*q-2 X(n+6)*q-1

Fig. 7 The architecture of component NNs in the PSN

Component NNs design

Figure 7 shows the architecture of a component back-
propagation neural network (BPN) in PSN. The BPN, which
has been successfully used in many applications in the
domain of NNs for MSPC (Guh 2007; Smith 1994), is used
as the component NNs of PSN. There are three layers in the
every component NNs: input layer, hidden layer, and output
layer. An input to the neural system should consist of a time-
series window vector. A window with more than one size
can potentially provide the required data for identification of
abnormal patterns.

Once an out-of-control signal is detected by |S| statistic
with type I error being equal to 0.5%, more abnormal data
points will be waited for (i.e., half of the size of the moving
window in this study) from the process to generate a moving
window vector. These vectors consisting of raw observations,
and six statistical feature elements are used as the training
data sets of PSN (input data feature will be discussed in sec-
tion “Input data features”). For each measurement point, the
size of the moving window is n (i.e., n observations are sam-
pled overtime series for each measurement point), and the
number of statistical features is 6, thus, the number of input
neurons in PSN is (n + 6)×q, where q is the number of part
dimensional measurement points.

The number of neurons in the hidden layer varies ran-
domly from 5 to 30 when creating each “candidate” NN
in this study. The outputs of component NNs represent the
different part variation motion patterns. According to sect.
“Part motion variation patterns”, there are six output neu-
rons, which represent Tx , Ty, Tz, Rx , Ry , and Rz , respec-
tively. There are totally 64 (26) possible output results. The
desired output values in the training sample are represented
by 1 and 0, which indicate that the pre-determined part var-
iation motion patterns appear or do not appear, respectively.
However, note that there are some cases, where the output
values of trained NN are close to either zero or one, and the
real value varies between 1 and 0, but is not exactly equal
to 0 or 1. Therefore, a threshold, which is usually called an
activation cutoff, γ0, is used to determine whether the actual
output value is sufficiently close to the target value. If the
output value is equal to or larger than γ0, the output is 1.
On the other hand, an output value that is smaller than γ0

indicates that the output is 0.
The choice of cutoff value usually is based on the consid-

erations of Type I and Type II errors. In statistical hypoth-
esis testing, there are two types of incorrect conclusions or
errors that can be drawn. If a null hypothesis is incorrectly
rejected, when it should in fact be accepted, it is called a Type
I error (also known as a false positive). A Type II error (also
known as a false negative), occurs when a null hypothesis is
incorrectly accepted when it should in fact be rejected. As
the cutoff value is closer to 1, the network will result in a
smaller Type I error and a larger Type II error. On the other
hand, smaller cutoff values result in a larger Type I error and
smaller Type II error. It is possible to use different cutoff val-
ues for upper and lower one-sided tested, however, in order
to reduce the complexity of the determination of process sta-
tus, the same cutoff value for upper and lower tests usually is
used. There are no absolute rules for setting the cutoff value
(Cheng and Cheng 2001; Shanker and Hu 1996). If the diag-
nosis scheme is very effective in reducing Type I error, the
cutoff value can be set closer to 1 and vice versa. In this study,
the value of 0.5 is used as the cutoff due to two reasons. First
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one is that the cutoff value 0.5 resulted in the good percent-
age of correct identification for PSN algorithm during the
training process, and the second one is that 0.5 is usually the
appropriate cutoff value for a practitioner with a relatively
big dataset (Shanker and Hu 1996). A total of 5,016 samples
were collected in this study.

Selection of “Good” NNs using PS technique

Once a number of trained NNs are obtained, PSN will select
several NNs from the “candidate” NNs to construct the NN
ensemble. Both theoretical and empirical studies demon-
strate that ensemble several “good” NNs with accuracy and
diversity could be better than ensemble all NNs for both
regression and classification problems (Zhou et al. 2002).
Furthermore, the size of the ensemble is reduced without
worsening the performance. However, excluding those “bad
candidate” and selecting the optimal subset from “candidate”
NNs is not an easy task as we may have imagined since the
space of possible subsets is very large (2z − 1) for a popula-
tion of size z(z is the number of “candidate” NNs). Thus, it is
impractical to use exhaustive search to find an optimal subset.
There is still no agreement about which method is the most
appropriate for selection of NNs. One possible method is to
order the population of trained NNs in terms of increasing
mean squared error, and to create an ensemble by including
those with the lowest error (Perrone and Cooper 1993).

Some intelligent evolution algorithms show distinguished
performance for solving these problems. Particle swarm
optimization (PSO) is a population based search algorithm,
which is inspired by the social behavior of bird flocks as
originally developed by Eberhart and Kennedy (1995). It is
widely reported that the PSO algorithm is very easy to imple-
ment and has fewer parameters to adjust when compared to
other evolutionary algorithms. Some researchers use PSO to
train neural networks and find that PSO-based ANN has a
better training performance, faster convergence rate, as well
as a better predicting ability than BP-based ANN (Lu et al.
2003; Zhou et al. 2002).

In this study, for PSN, one improved PS technique is used
to obtain an optimal subset from “candidate” NNs. Each par-
ticle is “flown” through the multidimensional search space,
adjusting its position in search space according to its own
experience and that of neighboring particles. The particle
therefore makes use of the best position encountered by itself
and that of its neighbors to position itself toward an optimal
solution. The performance of each particle is evaluated using
a predefined fitness function, which encapsulates the charac-
teristics of the optimization problem.

It is an iterative process in which the change in weights of
a particle at the beginning of an iteration are calculated using
Eq. (14) and new position of every particle is found using
Eq. (15).

vi (t + 1) = wvi (t)+ c1r1(pid − xi (t))+ c2r2(pgd − xi (t))

(14)

xi (t + 1) = xi (t) + vi (t + 1) (15)

where t is the current step number, w is the inertia weight,
c1 and c2 are the acceleration constants, r1 and r2 are two
random numbers in the range [0, 1], xi (t) is the current posi-
tion of the particle, pid is the best one of the solutions this
particle has reached, pgd is the best one of the solutions all
the particles have reached.

For PSN algorithm, simulated annealing (SA) is used to
improve the ability to escape from a local optimum. SA is
normally introduced as a heuristic approach to solve numer-
ous combinatorial optimization problems to replace those
schemes where the solution could get stuck on local opti-
mum. In the search process, the SA accepts not only better
but also worse neighboring solutions with a certain probabil-
ity. Such mechanism can be regarded as a trial to explore new
space for new solutions, either better or worse. The relative
success of SA algorithm has been tapped by many research-
ers (Pandey et al. 2006; Yen et al. 2004).

In this study, the SA technique is used to deal with every
particle according to the following two steps.

(1) If pid > pgd , accept pgd = pid with the probability 1
(2) If pid < pgd , accept pgd = pid with the probability

prob defined as:

prob = 1 − exp

(
− pgd − pid

temp

)
(16)

temp = ini temp × h (17)

where prob is the probability function, temp is the cur-
rent temperature, initemp is a constant selected as ini-
tial temperature, pid is the best one of the solutions this
particle has reached, pgd is the best one of the solutions
all the particles have reached, and h is the current step
number.

In the optimization process, for each of particle, the prob-
ability of making the transition from the current state S to a
candidate new state S′ is specified by an acceptance proba-
bility function prob(e, e′, T ), that depends on the energies
e = E(s) and e′ = E(s′) of the two states, and on a global
time-varying parameter T called the temperature (temp is the
current temperature and initemp is the initial temperature).
One essential requirement for the probability function prob
is that it must be nonzero when e′ > e (i.e., pid > pgd),
meaning that the system may move to the new state even
when it is worse (has a higher energy) than the current one.
This feature means that the SA technique makes it possible
to jump out of a local optimum to search for the global opti-
mum. On the other hand, when temperature T goes to zero,
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the probability prob(e, e′, T ) must tend to zero if e′ > e (i.e.,
pid > pgd), and to a positive value if e′ < e (i.e., pid < pgd).
The probability prob(e, e′, T ) is defined as 1 when e’ < e
(i.e., pid < pgd), i.e., the procedure always moved downhill
when it found a way to do so, irrespective of the tempera-
ture T . That way, for sufficiently small values of temperature
T , the swarm will increasingly favor moves that go to lower
energy values. Given these properties, the evolution of the
state S depends crucially on the temperature T . The proba-
bility of accepting a worse solution is larger at higher initial
temperature. As the temperature decreases, the probability
of accepting worse solutions gradually approaches zero.

The above treatment can increase the diversity in the parti-
cles and enable PSO to accept a bad solution with probability,
which will gradually decrease to zero as the temperature T
increases. In PSN algorithm, the particles are encoded as
binary strings with length N where in each elements of each
particle indicates the presence (1) or absence (0) of NNs in
the ensemble. Through continuous evolution of these parti-
cles to minimize the generalization error, the most optimal
global solution (i.e., the most optimal particle vector) can be
obtained.

Combination of outputs of component NNs

As for combining the predictions of component neural net-
works, the most prevailing approaches are plurality voting
or majority voting for classification tasks (Hansen and Sala-
mon 1990), and simple averaging or weighted averaging for
regression tasks (Zhou et al. 2002). In this study, the majority
voting method is used to RCI in fixture.

Input data features

The selection of the input features in training dataset signifi-
cantly affects the performance of an NN identifier. The input
feature vector must be able to strengthen the pattern feature
of the dataset. Hassan et al. (2003) conducted an experimen-
tal study for identifying six types of basic statistical patterns,
where the performances of two BPN recognizers using statis-
tical features and raw data as input features were compared,
respectively. The results indicated that the BPN using statis-
tical features as input vectors showed the better performance
than those of the other BPN using raw data as input vectors.
In the experiment, they selected six statistical features from
the ten statistical features (omitted remaining four features)
as an input vector into BPNs (shown in Table 2).

The majority of the above features are commonly used
in statistical applications. The skewness is a measure of the
asymmetry of the data around the sample mean. The mean
square value is the “average power” of the input vector. Auto-
correlation measures the dependence of data at one instant in
time with other data at another instant in time. The Cusum

statistics involves the calculation of a cumulative sum and
incorporates all information from sample values over time
series by accumulating the sums of deviations of sample val-
ues from a target value. For more details of these statistical
features, readers are referred to the literature (Hassan et al.
2003). The six statistical features extracted from raw data can
represent the original data very effectively, and thus are used
as one part of input features of NN recognizers in this study.
Thus, the input feature vector for PSN comprises raw obser-
vations and the corresponding six statistical feature values
(R&F-based input).

Identification procedure

Based on the developed pattern relationships, PSN algorithm
and |S| control chart, the root cause in fixture identification
procedure is proposed as follows:

Step 1: Build the off-line relationships between fixture
fault patterns F1, F2, F3, F4, F5, F6 and part varia-
tion motion patterns Tx , Ty, Tz, Rx , Ry, Rz accord-
ing to section “Patterns relationships”.

Step 2: Collect data sets by recording on-line time series
measurements for each measurement point that
need to be monitored and judge whether the pro-
cess is in normal or abnormal statistical condition
using |S| control chart.

Step 3: Identify which ones in the part variation motion
patterns Tx , Ty, Tz, Rx , Ry, Rz occur in machining
process using PSN algorithm designed in section
“PSN algorithm”, if the process is in abnormal sta-
tistical condition.

Step 4: Identify and isolate the root cause in fixture based
on the following rules (also shown in Table 3).

Rule 1: If the output result of PSN shows that Tx

variation pattern appears, then the vari-
ation type F1 is identified.

Rule 2: If the output result of PSN shows that
Tx , Ty and Rz variation pattern appear,

Table 2 List of the selected and omitted statistical features (Hassan
et al. 2003)

Selected features Omitted features

Mean Median

Standard deviation (SD) Range

Skewness (sk) Kurtosis

Mean-square value (ms) Slope

Autocorrelation (ac)

Cusum (cu)
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and Cor(Tx , Ty) ⊕ Cor(Tx , Rz) ⊕ Cor
(Ty, Rz) is true, then the variation type
F2 is identified.

Rule 3: If the output result of PSN shows that
Tx , Ty and Rz variation pattern appear,
and Cor(Tx , Ty)⊕Cor

(
Tx , R−1

z

)⊕Cor(
Ty, R−1

z

)
is true, then the variation type

F3 is identified.
Rule 4: If the output result of PSN shows that

Tz and Ry variation pattern appears, and
Cor(Tz, R−1

y ) is true, then the variation
type F4 is identified.

Rule 5: If the output result of PSN shows that
Tz and Rx variation pattern appear, and
Cor

(
Tz, R−1

x

)
is true, then the variation

type F5 is identified.
Rule 6: If the output result of PSN shows that

Rx and Ry variation pattern appear, and
Cor(Rx , Ry) is true, then the variation
type F6 is identified.

Rule 7: If the output result of PSN is not anyone
of the results in Rule 1–6, or the output
result of PSN is anyone of the results
in Rule 1–6 but the corresponding result
of correlation analysis is not true, then
wrong identification is made.

Correct identification percentage (CIP) is used to evaluate
the ability for the developed approach to identify the root
cause correctly in a machining process. Higher correct iden-
tification percentage one identification approach has, better

identification approach is. It can be obtained through Eq. (18),

C I P = C I N

C I N + W I N
(18)

where WIN represents wrong identification number, CIN rep-
resents correct identification number.

Case study

To validate the usefulness and effectiveness of the developed
methodology, its real application in a cylinder head of engine
machining process for RCI is illustrated in this section. Cyl-
inder head is one of these most important components of an
engine and has very strict dimensional specification. Its qual-
ity can directly affect the reliability and performance of the
engine. However, the complexity of cylinder head machin-
ing processes make it very difficult to efficiently identify the
root cause in fixture depend solely on the operator’s experi-
ence. The immediate location of root cause in fixture in cyl-
inder head machining processes can facilitate rapid analysis
and corrective action by quality engineers to greatly improve
dimensional quality and reduce machining cost.

Machining process

Figures 8 and 9 graphically show the operational sequence
of cylinder head of engine, and fixture locating scheme of
cylinder head of engine, respectively.

There are totally twenty-five measurement points to be
on-line observed and monitored through the developed |S|

Table 3 RCI rules

Output of PSN Result of correlation analysis Root cause

Tx Ty Tz Rx Ry Rz

1 0 0 0 0 0 F1
0 1 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 1 1 0 0 Cor
(
Tz, R−1

x

)
F5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 1 0 1 0 Cor
(

Tz, R−1
y

)
F4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 1 1 0 Cor
(
Rx , Ry

)
F6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 1 0 0 0 1 Cor
(
Tx , Ty

) ⊕ Cor (Tx , Rz) ⊕ Cor
(
Ty, Rz

)
F2

Cor
(
Tx , Ty

) ⊕ Cor
(
Tx , R−1

z

) ⊕ Cor
(
Ty, R−1

z

)
F3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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Raw workpiece

Mill cover face Mill joint face Drill datum holes
Tap holes & mill slot

Fig. 8 Machining process of cylinder head of engine

Fig. 9 Fixture layout and
locating scheme of cylinder
head of engine

(a) Fixture layout and locating errors             (b) Locating scheme

Fixture fault

control chart and PSN, which are on the different product
characteristics (as shown in Fig. 10):

Cover face A: H09,H10,H11,H12,H13,H14,H15,H16
Plane M : X01, X02, Y 01, Y 02, Z01
Slot S: S01, S02, S03, S04
Joint face B:H01,H02,H03,H04,H05,H06,H07,H08

The final parts are measured using coordinate measure-
ment machine (CMM) at measurement station (shown in
Fig. 11).

Structure and relative parameters

The performance of learning in PSN algorithm is influenced
by its structure and relative parameters. There are no abso-
lute rules for tuning these key factors, which are dependent
on the characteristics of the real-world problems. A large
number of factors discussed possibly affect the performance
of PSN. These factors include different input features, num-
ber of elements in time-series window vector, sample size,
number of “candidate” NNs, number of particles, and initial
temperature, etc.

For practical application of the developed monitoring and
identifying system, user-friendly computer programs using
MATLAB toolbox� (The MathWorks Company, 2004) is
developed, so potential users do not need to have a back-

ground in multivariate control and neural network. Fig. 12
shows one interface of the program.

Component NNs

(1) Input layer: There are (n + 6) × q neurons including
n raw observations and six statistical features for each
measurement point, where q is the number of mea-
surement point in the assemble process. The window
size 2, 4, 8, 10, 14, and 30 are considered in this study.

(2) Output layer: The output layer consists of six neurons
(i.e., Tx , Ty, Tz, Rx , Ry , and Rz) representing six part
variation motion pattern.

(3) Hidden layer: There is one hidden layer in the com-
ponent network. The number of neurons in the hidden
layer is randomly obtained from 5 to 30 when creating
each “candidate” NN, which can improve the diversity
of component networks and avoid complicated search-
ing procedure to find suitable number of neurons in the
hidden layer when constructing a component network.

(4) Activation function: The hyper tangent (tansig) and
sigmoid (logsig) functions are used for hidden and out-
put layer activation function, respectively.

(5) Error function: The standard error function is used to
evaluate the error between the expected and actual out-
put values of the NNs. The mean square error (MSE)
is used in this study.
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Fig. 10 Key measurement points of cylinder head of engine

Fig. 11 Measurement station of cylinder head of engine

(6) The initial connective weights are randomly generated
within a small range, i.e., [−0.2, 0.2].

(7) The learning number: the NNs stop learning when they
reach a pre-determined learning number. In this study,
the learning number is 1,500.

(8) The tries of “candidate” NNs: in the first step of con-
structing PSN, the number of “candidate” NNs, 5, 10,
15, 20, 25, 30, 35 and 40 are considered.

(9) Fitness function: fitness function plays a key role in
selecting the optimal subset from “candidate” NNs. In
this study, the generalization error of NN ensemble is
used (i.e., fitness = Ê).

(10) The proportion of the training data set and the test
data set: in this study, 75% of examples are used as the
training dataset.

PS

(1) The number of particles in PS: when using PS tech-
nique to select the subset from “candidate” NNs, the
number of particles 5, 10, 15, 20, 25, 30, 35 and 40 are
considered.

(2) Iteration times: epoch equals 150.
(3) The inertia weights: wmin equals 0.2 and wmax equals

0.8.

(4) The speed of particles: vmax equals 4 and vmin equals
−4.

(5) The initial velocities: the initial velocities of the initial
particles were generated at random in the range [−4, 4].

(6) The study factors: c1 equals 2 and c2 equals 2.
(7) The initial temperature initemp is 0.55.

Results and analysis

The developed RCI approach based on PSN algorithm and
engineering knowledge can serve as an effective tool to mon-
itor and identify the root cause in fixture and facilitate the
formulation of better process control performance. This sec-
tion reports the initial results of applying this system to a real
machining process cylinder head of engine.

There are thirteen measurement points (H09, H10,

H11, H12, H13, H14, H15, H16, X01, X02, Y 01, Y 02,
and Z01) on cover face A (and plane M), and twelve
measurement points (H01, H02, H03, H04, H05, H06,

H07, H08, S01, S02, S03, S04) on joint face B (and slot
S), which were measured independently. A total of 5,016
samples of measurement data for cover face A (and plane
M) and joint face B (and slot S) were collected and used as
training (learning) data set and test (applying) data set. The
training data set and test data set consists of 3,762 samples
(75%) and 1,254 samples (25%), respectively. Tables 4 and 5
present the test results of the CIP for cover face A (and plane
M) and joint face B (and slot S) using R&F-based PSN and
engineering rules developed in this study. Columns 1–4 in
Tables 4 and 5 show output mode, actual number of times
the machining process reaches the fault type, the numbers
of correct identification by PSN, and CIP, respectively. Fo in
the Tables 4 and 5 means that no failure occurs in machining
processes. The overall total percentage of correct identifica-
tion for cover face A and joint face B is 86.09 and 88.50%,
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Fig. 12 Practical application of
the developed monitoring and
identifying system

Table 4 CIP for cover face A and plane M

Type Actual The number of CIP (%)
number right classification

Fo 1,148 1,127 98.17

F1 25 24 96.00

F2 13 11 84.62

F3 19 16 84.21

F4 22 17 77.27

F5 17 14 82.35

F6 10 8 80.00

Average 86.09

indicating that the developed method exhibits a good ability
to on-line identify the root cause in fixture.

From Tables 4 and 5, it can be observed that the devel-
oped identification approach has different identification abil-
ity for different fault type. For fault type F1, the identification
method has the best identification ability (CIP is 96.00 and
100%, respectively), which means that whenever the fixture
fault type F1 occurs, the approach would identify it with
highest probability. Moreover, identifying fault type F1 does
not have correlation analysis. It also can be found that it
is easier for the developed approach to identify fault type
F1, F2, F3(the average CIP is 88.28 and 85.53%, respec-

Table 5 CIP for joint face B (and slot S)

Output mode Actual The numbers of CIP (%)
number right classification

Fo 1,154 1,136 98.44

F1 21 21 100

F2 17 14 82.35

F3 11 10 90.91

F4 12 10 83.33

F5 19 17 89.47

F6 20 15 75.00

Average 88.50

tively) than to identify abnormal mode F4, F5, F6 (the aver-
age CCP is 79.88 and 82.60, respectively). This means that it
is easier to identify the translation of fixture than to identify
the rotation fault of fixture. All these results demonstrate that
the developed method in this study can perform effectively
for RCI in a machining process.

Conclusions and discussions

For complex machining processes, solely relying on mea-
surement data or pure artificial intelligence methods, with-
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out integration with knowledge about the product/pro-
cess, it is insufficient for the purpose of localizing root
cause. In these cases, it becomes very necessary to inte-
grate artificial intelligence methods as well as engineering
knowledge.

One novel robust RCI approach in machining process
based on hybrid learning algorithm and engineering knowl-
edge is developed, which has the following merits: (1) this
approach has excellent noise tolerance in real time, and
requires no hypothesis on statistical distribution of mea-
surements since it uses neural network ensemble; (2) the
approach has explicit engineering interpretation since it inte-
grates engineering knowledge about product, process as well
as measurement information; (3) this approach can be oper-
ated without lots of intervention of operators to on-line auto-
matically monitoring product quality based on multivariate
control chart. Moreover, some user-friendly computer pro-
grams using MATLAB toolbox are developed, so potential
users do not need to have a background in multivariate con-
trol and neural network. The data from the real-world cyl-
inder head of engine machining processes are collected to
validate the effectiveness of the developed approach. The
analysis results indicate that the developed approach can per-
form effectively for identifying the root cause in fixture in
the machining process.

Although this work considers mainly application in
machining processes of cylinder head of engine, the pro-
posed approach can be applied to many machining processes
if these processes only need to satisfy two conditions. First
one is that the parts in machining processes are rigid. The
number of flexible parts variation motion patterns is pos-
sibly more than six, whereas all rigid body part variation
motion can be described only through six patterns, i.e., trans-
lations along X, Y, and Z axis and rotations around X, Y, and Z
axis. Since 3-2-1 fixture locating scheme is generic, the pat-
terns map process developed in sect. “Patterns map process”
can be applied to the machining processes of all rigid body
parts. Another condition is that enough samples of measure-
ments needs to be obtained in machining processes. This is
not a big problem in modern machining processes. With the
advancements in sensing and computational technologies, an
enormous amount of process/product-related information is
available in real time.
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Ertuğrul, İ., & Aytaç, E. (2009). Construction of quality control charts
by using probability and fuzzy approaches and an application in
a textile company. Journal of Intelligent Manufacturing, 20, 139–
149.

Guh, R. S. (2007). On-line identification and quantification of mean
shifts in bivariate processes using a neural network-based
approach. Quality and Reliability Engineering International,
23, 367–385.

Gutta, S., & Wechsler, H. (1996). Face recognition using hybrid clas-
sifier systems. In: Proceedings of the ICNN-96 (pp. 1017–1022).
Washington, DC: IEEE Computer Society Press, Los Alamitos,
CA.

Hansen, L. K., & Salamon, P. (1990). Neural network ensem-
bles. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12, 993–1001.

Hassan, A., Shariff, N. B. M., Shaharoun, A. M., & Jama-
luddin, H. (2003). Improved SPC chart pattern recognition
using statistical features. International Journal of Production
Research, 41(7), 1587–1603.

Huang, Y., McMurran, R., Dhadyalla, G., & Jones, R. P. (2008). Prob-
ability based vehicle fault diagnosis: Bayesian network
method. Journal of Intelligent Manufacturing, 19(3), 301–311.

Jiang, P. Y., Liu, D. Y., & Zeng, Z. J. (2009). Recognizing control
chart patterns with neural network and numerical fitting. Journal
of Intelligent Manufacturing, 20, 625–635.

Lian, J., Lai, X., Lin, Z., & Yao, F. S. (2002). Application of data
mining and process knowledge discovery in sheet metal assembly
dimensional variation diagnosis. Journal of Materials Processing
Technology, 129, 315–320.

Liu, G., & Hu, S. J. (2005). Assembly fixture diagnosis using desig-
nated component analysis. Journal of Manufacturing Science and
Engineering, 127, 358–368.

Lu, W. Z., Fan, H. Y., & Lo, S. M. (2003). Application of evolu-
tionary neural network method in predicting pollutant levels in
downtown area of Hong Kong. Neurocomputing, 51, 387–400.

Maqsood, I., Khan, M. R., & Abraham, A. (2004). An ensemble of
neural networks for weather forecasting. Neural Computing and
Application, 13, 112–122.

123



J Intell Manuf (2012) 23:1833–1847 1847

McCulloch, C., & Searle, S. R. (2001). Generalized, linear, and mixed
models. New York, NY: Wiley.

Montgomery, D. C. (2005). Introduction to statistical quality con-
trol (5th ed.). New York, NY: Wiley.

Pandey, V., Tiwari, M. K., & Kumar, S. (2006). An interactive
approach to solve the operation sequencing problem using simu-
lated annealing. International Journal of Advanced Manufacturing
Technology, 29, 1212–1231.

Perrone, M. P, & Cooper, L. (1993). When networks disagree: Ensem-
ble method for neural networks. In R. J. Mammone (Ed.),
Artificial neural networks for speed and vision (pp. 126–142). New
York: Chapman & Hill.

Schapire, R. E. (1990). The strength of weak learnability. Machine
Learning, 5, 197–227.

Shanker, M., & Hu, M. (1996). Cutoff values for two-group classifica-
tion using neural networks. Industrial Mathematics, 46(1), 33–45.

Shi, J., & Zhou, S. (2009). Quality control and improvement for
multistage systems: A survey. IIE Transactions, 41, 9,744–9,753.

Smith, A. E. (1994). X-Bar and R control chart interpretation using
neural computing. International Journal of Production Research,
32, 309–320.

Wang, T. Y., & Chen, L. H. (2002). Mean shifts detection and classifi-
cation in multivariate process: A neural-fuzzy approach. Journal
of Intelligent Manufacturing, 13(3), 211–221.

Yen, C. H., Wong, D. S. H., & Jang, S. S. (2004). Solution of trim-
loss problem by an integrated simulated annealing and ordinal
optimization approach. Journal of Intelligent Manufacturing,
15, 701–709.

Zhou, Z. H., Wu, J. X., & Tang, W. (2002). Ensembling neural networks:
Many could be better than all. Artificial Intelligence, 137, 239–
263.

Zhou, S., Chen, Y., & Shi, J. (2004). Root cause estimation and
statistical testing for quality improvement of multistage man-
ufacturing processes. IEEE Transactions on Automation Science
and Engineering, 1(1), 73–83.

123


	A robust approach for root causes identification in machining processes using hybrid learning algorithm and engineering knowledge
	Abstract
	Introduction
	Overview
	Patterns relationships
	Fixture fault patterns
	Part motion variation patterns
	Patterns map process

	PSN algorithm
	NN ensemble framework
	PSN design
	``Candidate'' NNs creation
	Component NNs design
	Combination of outputs of component NNs
	Input data features

	Identification procedure
	Case study
	Machining process
	Structure and relative parameters
	Results and analysis

	Conclusions and discussions
	Acknowledgments
	References


